{"title":"On approximating the number of k-cliques in sublinear time","authors":"T. Eden, D. Ron, C. Seshadhri","doi":"10.1145/3188745.3188810","DOIUrl":null,"url":null,"abstract":"We study the problem of approximating the number of k-cliques in a graph when given query access to the graph. We consider the standard query model for general graphs via (1) degree queries, (2) neighbor queries and (3) pair queries. Let n denote the number of vertices in the graph, m the number of edges, and Ck the number of k-cliques. We design an algorithm that outputs a (1+ε)-approximation (with high probability) for Ck, whose expected query complexity and running time are O(n/Ck1/k+mk/2/Ck )(logn, 1/ε,k). Hence, the complexity of the algorithm is sublinear in the size of the graph for Ck = ω(mk/2−1). Furthermore, we prove a lower bound showing that the query complexity of our algorithm is essentially optimal (up to the dependence on logn, 1/ε and k). The previous results in this vein are by Feige (SICOMP 06) and by Goldreich and Ron (RSA 08) for edge counting (k=2) and by Eden et al. (FOCS 2015) for triangle counting (k=3). Our result matches the complexities of these results. The previous result by Eden et al. hinges on a certain amortization technique that works only for triangle counting, and does not generalize for larger cliques. We obtain a general algorithm that works for any k≥ 3 by designing a procedure that samples each k-clique incident to a given set S of vertices with approximately equal probability. The primary difficulty is in finding cliques incident to purely high-degree vertices, since random sampling within neighbors has a low success probability. This is achieved by an algorithm that samples uniform random high degree vertices and a careful tradeoff between estimating cliques incident purely to high-degree vertices and those that include a low-degree vertex.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72
Abstract
We study the problem of approximating the number of k-cliques in a graph when given query access to the graph. We consider the standard query model for general graphs via (1) degree queries, (2) neighbor queries and (3) pair queries. Let n denote the number of vertices in the graph, m the number of edges, and Ck the number of k-cliques. We design an algorithm that outputs a (1+ε)-approximation (with high probability) for Ck, whose expected query complexity and running time are O(n/Ck1/k+mk/2/Ck )(logn, 1/ε,k). Hence, the complexity of the algorithm is sublinear in the size of the graph for Ck = ω(mk/2−1). Furthermore, we prove a lower bound showing that the query complexity of our algorithm is essentially optimal (up to the dependence on logn, 1/ε and k). The previous results in this vein are by Feige (SICOMP 06) and by Goldreich and Ron (RSA 08) for edge counting (k=2) and by Eden et al. (FOCS 2015) for triangle counting (k=3). Our result matches the complexities of these results. The previous result by Eden et al. hinges on a certain amortization technique that works only for triangle counting, and does not generalize for larger cliques. We obtain a general algorithm that works for any k≥ 3 by designing a procedure that samples each k-clique incident to a given set S of vertices with approximately equal probability. The primary difficulty is in finding cliques incident to purely high-degree vertices, since random sampling within neighbors has a low success probability. This is achieved by an algorithm that samples uniform random high degree vertices and a careful tradeoff between estimating cliques incident purely to high-degree vertices and those that include a low-degree vertex.