{"title":"New infinite families of near MDS codes holding $t$-designs and optimal locally recoverable codes","authors":"Ziling Heng, Xinran Wang","doi":"10.48550/arXiv.2210.05194","DOIUrl":null,"url":null,"abstract":"In ``Infinite families of near MDS codes holding $t$-designs, IEEE Trans. Inform. Theory, 2020, 66(9), pp. 5419-5428'', Ding and Tang made a breakthrough in constructing the first two infinite families of NMDS codes holding $2$-designs or $3$-designs. Up to now, there are only a few known infinite families of NMDS codes holding $t$-designs in the literature. The objective of this paper is to construct new infinite families of NMDS codes holding $t$-designs. We determine the weight enumerators of the NMDS codes and prove that the NMDS codes hold $2$-designs or $3$-designs. Compared with known $t$-designs from NMDS codes, ours have different parameters. Besides, several infinite families of optimal locally recoverable codes are also derived via the NMDS codes.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"182 1","pages":"113538"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.05194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In ``Infinite families of near MDS codes holding $t$-designs, IEEE Trans. Inform. Theory, 2020, 66(9), pp. 5419-5428'', Ding and Tang made a breakthrough in constructing the first two infinite families of NMDS codes holding $2$-designs or $3$-designs. Up to now, there are only a few known infinite families of NMDS codes holding $t$-designs in the literature. The objective of this paper is to construct new infinite families of NMDS codes holding $t$-designs. We determine the weight enumerators of the NMDS codes and prove that the NMDS codes hold $2$-designs or $3$-designs. Compared with known $t$-designs from NMDS codes, ours have different parameters. Besides, several infinite families of optimal locally recoverable codes are also derived via the NMDS codes.