New infinite families of near MDS codes holding $t$-designs and optimal locally recoverable codes

Ziling Heng, Xinran Wang
{"title":"New infinite families of near MDS codes holding $t$-designs and optimal locally recoverable codes","authors":"Ziling Heng, Xinran Wang","doi":"10.48550/arXiv.2210.05194","DOIUrl":null,"url":null,"abstract":"In ``Infinite families of near MDS codes holding $t$-designs, IEEE Trans. Inform. Theory, 2020, 66(9), pp. 5419-5428'', Ding and Tang made a breakthrough in constructing the first two infinite families of NMDS codes holding $2$-designs or $3$-designs. Up to now, there are only a few known infinite families of NMDS codes holding $t$-designs in the literature. The objective of this paper is to construct new infinite families of NMDS codes holding $t$-designs. We determine the weight enumerators of the NMDS codes and prove that the NMDS codes hold $2$-designs or $3$-designs. Compared with known $t$-designs from NMDS codes, ours have different parameters. Besides, several infinite families of optimal locally recoverable codes are also derived via the NMDS codes.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"182 1","pages":"113538"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.05194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In ``Infinite families of near MDS codes holding $t$-designs, IEEE Trans. Inform. Theory, 2020, 66(9), pp. 5419-5428'', Ding and Tang made a breakthrough in constructing the first two infinite families of NMDS codes holding $2$-designs or $3$-designs. Up to now, there are only a few known infinite families of NMDS codes holding $t$-designs in the literature. The objective of this paper is to construct new infinite families of NMDS codes holding $t$-designs. We determine the weight enumerators of the NMDS codes and prove that the NMDS codes hold $2$-designs or $3$-designs. Compared with known $t$-designs from NMDS codes, ours have different parameters. Besides, several infinite families of optimal locally recoverable codes are also derived via the NMDS codes.
新的无限族的近MDS码持有$t$-设计和最优的局部可恢复码
在“持有$t$-设计的无限族近MDS码”中,IEEE Trans。通知。“理论,2020,66(9),pp. 5419-5428”,Ding和Tang在构造前两个具有$2$-设计或$3$-设计的无限族NMDS代码方面取得了突破。到目前为止,文献中已知的具有$t$-设计的无限族NMDS码很少。本文的目的是构造具有$t$-设计的新的无限族NMDS码。我们确定了NMDS码的权重枚举数,并证明了NMDS码持有$2$设计或$3$设计。与NMDS规范中已知的$t$-设计相比,我们的设计具有不同的参数。此外,还利用NMDS码导出了若干无限族的最优局部可恢复码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信