Adaptive noise immune cluster ensemble using affinity propagation

Zhiwen Yu, Guoqiang Han, Le Li, Jiming Liu, Jun Zhang
{"title":"Adaptive noise immune cluster ensemble using affinity propagation","authors":"Zhiwen Yu, Guoqiang Han, Le Li, Jiming Liu, Jun Zhang","doi":"10.1109/ICDE.2016.7498371","DOIUrl":null,"url":null,"abstract":"Cluster ensemble, as one of the important research directions in the ensemble learning area, is gaining more and more attention, due to its powerful capability to integrate multiple clustering solutions and provide a more accurate, stable and robust result. Cluster ensemble has a lot of useful applications in a large number of areas. Although most of traditional cluster ensemble approaches obtain good results, few of them consider how to achieve good performance for noisy datasets. Some noisy datasets have a number of noisy attributes which may degrade the performance of conventional cluster ensemble approaches. Some noisy datasets which contain noisy samples will affect the final results. Other noisy datasets may be sensitive to distance functions.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"5 1","pages":"1454-1455"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Cluster ensemble, as one of the important research directions in the ensemble learning area, is gaining more and more attention, due to its powerful capability to integrate multiple clustering solutions and provide a more accurate, stable and robust result. Cluster ensemble has a lot of useful applications in a large number of areas. Although most of traditional cluster ensemble approaches obtain good results, few of them consider how to achieve good performance for noisy datasets. Some noisy datasets have a number of noisy attributes which may degrade the performance of conventional cluster ensemble approaches. Some noisy datasets which contain noisy samples will affect the final results. Other noisy datasets may be sensitive to distance functions.
基于亲和传播的自适应噪声免疫聚类集成
聚类集成作为集成学习领域的重要研究方向之一,由于其强大的集成多个聚类解决方案的能力,提供更加准确、稳定和鲁棒的结果,越来越受到人们的关注。集群集成在许多领域都有很多有用的应用。虽然大多数传统的聚类集成方法都获得了良好的效果,但很少有人考虑如何在噪声数据集上获得良好的性能。一些有噪声的数据集具有许多噪声属性,这可能会降低传统聚类集成方法的性能。一些包含噪声样本的噪声数据集会影响最终结果。其他有噪声的数据集可能对距离函数很敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信