η -pairing in correlated fermion models with spin-orbit coupling

K. Li
{"title":"η\n-pairing in correlated fermion models with spin-orbit coupling","authors":"K. Li","doi":"10.1103/physrevb.102.165150","DOIUrl":null,"url":null,"abstract":"We generalize the $\\eta$-pairing theory in Hubbard models to the ones with spin-orbit coupling (SOC) and obtain the conditions under which the $\\eta$-pairing operator is an eigenoperator of the Hamiltonian. The $\\eta$ pairing thus reveals an exact $SU(2)$ pseudospin symmetry in our spin-orbit coupled Hubbard model, even though the $SU(2)$ spin symmetry is explicitly broken by the SOC. In particular, these exact results can be applied to a variety of Hubbard models with SOC on either bipartite or non-bipartite lattices, whose noninteracting limit can be a Dirac semimetal, a Weyl semimetal, a nodal-line semimetal, and a Chern insulator. The $\\eta$ pairing conditions also impose constraints on the band topology of these systems. We then construct and focus on an interacting Dirac-semimetal model, which exhibits an exact pseudospin symmetry with fine-tuned parameters. The stability regions for the \\emph{exact} $\\eta$-pairing ground states (with momentum $\\bm{\\pi}$ or $\\bm{0}$) and the \\emph{exact} charge-density-wave ground states are established. Between these distinct symmetry-breaking phases, there exists an exactly solvable multicritical line. In the end, we discuss possible experimental realizations of our results.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.165150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We generalize the $\eta$-pairing theory in Hubbard models to the ones with spin-orbit coupling (SOC) and obtain the conditions under which the $\eta$-pairing operator is an eigenoperator of the Hamiltonian. The $\eta$ pairing thus reveals an exact $SU(2)$ pseudospin symmetry in our spin-orbit coupled Hubbard model, even though the $SU(2)$ spin symmetry is explicitly broken by the SOC. In particular, these exact results can be applied to a variety of Hubbard models with SOC on either bipartite or non-bipartite lattices, whose noninteracting limit can be a Dirac semimetal, a Weyl semimetal, a nodal-line semimetal, and a Chern insulator. The $\eta$ pairing conditions also impose constraints on the band topology of these systems. We then construct and focus on an interacting Dirac-semimetal model, which exhibits an exact pseudospin symmetry with fine-tuned parameters. The stability regions for the \emph{exact} $\eta$-pairing ground states (with momentum $\bm{\pi}$ or $\bm{0}$) and the \emph{exact} charge-density-wave ground states are established. Between these distinct symmetry-breaking phases, there exists an exactly solvable multicritical line. In the end, we discuss possible experimental realizations of our results.
具有自旋-轨道耦合的相关费米子模型中的η对
我们将Hubbard模型中的$\eta$ -配对理论推广到具有自旋-轨道耦合(SOC)的模型中,得到了$\eta$ -配对算子是哈密顿算子的特征算子的条件。因此,$\eta$配对揭示了我们的自旋轨道耦合Hubbard模型中精确的$SU(2)$伪自旋对称,尽管$SU(2)$自旋对称被SOC明确地破坏了。特别地,这些精确的结果可以应用于在二部或非二部晶格上具有SOC的各种Hubbard模型,其非相互作用极限可以是Dirac半金属,Weyl半金属,节点线半金属和Chern绝缘体。$\eta$配对条件也对这些系统的频带拓扑施加了约束。然后,我们构建并重点研究了一个相互作用的狄拉克-半金属模型,该模型具有精确的伪自旋对称性和微调参数。建立了\emph{精确的}$\eta$ -配对基态(动量为$\bm{\pi}$或$\bm{0}$)和\emph{精确}的电荷密度波基态的稳定区域。在这些不同的对称破缺相之间,存在一条精确可解的多临界线。最后,讨论了实验结果的可能实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信