Attention deep learning based model for predicting the 3D Human Body Pose using the Robot Human Handover Phases

Javier Laplaza, Albert Pumarola, F. Moreno-Noguer, A. Sanfeliu
{"title":"Attention deep learning based model for predicting the 3D Human Body Pose using the Robot Human Handover Phases","authors":"Javier Laplaza, Albert Pumarola, F. Moreno-Noguer, A. Sanfeliu","doi":"10.1109/RO-MAN50785.2021.9515402","DOIUrl":null,"url":null,"abstract":"This work proposes a human motion prediction model for handover operations. We use in this work, the different phases of the handover operation to improve the human motion predictions. Our attention deep learning based model takes into account the position of the robot’s End Effector (REE) and the phase in the handover operation to predict future human poses. Our model outputs a distribution of possible positions rather than one deterministic position, a key feature in order to allow robots to collaborate with humans. We provide results of the human upper body and the human right hand, also referred as Human End Effector (HEE).The attention deep learning based model has been trained and evaluated with a dataset created using human volunteers and an anthropomorphic robot, simulating handover operations where the robot is the giver and the human the receiver. For each operation, the human skeleton is obtained with an Intel RealSense D435i camera attached inside the robot’s head. The results shown a great improvement of the human’s right hand prediction and 3D body compared with other methods.","PeriodicalId":6854,"journal":{"name":"2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN)","volume":"116 1","pages":"161-166"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN50785.2021.9515402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This work proposes a human motion prediction model for handover operations. We use in this work, the different phases of the handover operation to improve the human motion predictions. Our attention deep learning based model takes into account the position of the robot’s End Effector (REE) and the phase in the handover operation to predict future human poses. Our model outputs a distribution of possible positions rather than one deterministic position, a key feature in order to allow robots to collaborate with humans. We provide results of the human upper body and the human right hand, also referred as Human End Effector (HEE).The attention deep learning based model has been trained and evaluated with a dataset created using human volunteers and an anthropomorphic robot, simulating handover operations where the robot is the giver and the human the receiver. For each operation, the human skeleton is obtained with an Intel RealSense D435i camera attached inside the robot’s head. The results shown a great improvement of the human’s right hand prediction and 3D body compared with other methods.
基于注意力深度学习的机器人人机交接阶段三维人体姿态预测模型
本文提出了一种用于切换操作的人体运动预测模型。在这项工作中,我们使用切换操作的不同阶段来改进人体运动预测。我们的基于注意力深度学习的模型考虑了机器人末端执行器(REE)的位置和切换操作的阶段来预测未来的人体姿势。我们的模型输出可能位置的分布,而不是一个确定的位置,这是允许机器人与人类合作的关键特征。我们提供人体上半身和右手的结果,也被称为人体末端执行器(HEE)。使用人类志愿者和拟人化机器人创建的数据集对基于注意力深度学习的模型进行了训练和评估,模拟了机器人作为给予者和人类作为接受者的移交操作。对于每一次操作,人类骨骼都是通过安装在机器人头部内的英特尔RealSense D435i摄像头获得的。结果表明,与其他方法相比,该方法对人体右手和三维身体的预测有了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信