S.S. Lucas , C. Moxham , E. Tziviloglou , H. Jonkers
{"title":"Study of self-healing properties in concrete with bacteria encapsulated in expanded clay","authors":"S.S. Lucas , C. Moxham , E. Tziviloglou , H. Jonkers","doi":"10.1016/j.stmat.2018.11.006","DOIUrl":null,"url":null,"abstract":"<div><p>Preparation process and life service solicitations can cause damage on concrete's internal structure, creating cracks that tend to propagate and increase with time. This poses a risk of failure as water penetrates, corroding the rebar reducing concrete's life span. Cement can exhibit up to a certain extent a natural ability to self-heal, consequence of the long-term hydration phenomenon. Some initial cracks can be spontaneously closed if the right conditions are met (humidity). However, it will not be enough to repair major cracks formed internally over a long period of use, so strategies need to be developed to achieve an efficient level of self-healing. This need lead to a new concept – self-healing. The biological approach is a suitable alternative to achieve healing in concrete. In this work, bacteria were immobilised in expanded clay and added to concrete by aggregate replacement.</p></div>","PeriodicalId":101145,"journal":{"name":"Science and Technology of Materials","volume":"30 ","pages":"Pages 93-98"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stmat.2018.11.006","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2603636318300629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
Preparation process and life service solicitations can cause damage on concrete's internal structure, creating cracks that tend to propagate and increase with time. This poses a risk of failure as water penetrates, corroding the rebar reducing concrete's life span. Cement can exhibit up to a certain extent a natural ability to self-heal, consequence of the long-term hydration phenomenon. Some initial cracks can be spontaneously closed if the right conditions are met (humidity). However, it will not be enough to repair major cracks formed internally over a long period of use, so strategies need to be developed to achieve an efficient level of self-healing. This need lead to a new concept – self-healing. The biological approach is a suitable alternative to achieve healing in concrete. In this work, bacteria were immobilised in expanded clay and added to concrete by aggregate replacement.