Dynamic Movement Primitives: Volumetric Obstacle Avoidance

Michele Ginesi, D. Meli, A. Calanca, D. Dall’Alba, N. Sansonetto, P. Fiorini
{"title":"Dynamic Movement Primitives: Volumetric Obstacle Avoidance","authors":"Michele Ginesi, D. Meli, A. Calanca, D. Dall’Alba, N. Sansonetto, P. Fiorini","doi":"10.1109/ICAR46387.2019.8981552","DOIUrl":null,"url":null,"abstract":"Dynamic Movement Primitives (DMPs) are a framework for learning a trajectory from a demonstration. The trajectory can be learned efficiently after only one demonstration, and it is immediate to adapt it to new goal positions and time duration. Moreover, the trajectory is also robust against perturbations. However, obstacle avoidance for DMPs is still an open problem. In this work, we propose an extension of DMPs to support volumetric obstacle avoidance based on the use of superquadric potentials. We show the advantages of this approach when obstacles have known shape, and we extend it to unknown objects using minimal enclosing ellipsoids. A simulation and experiments with a real robot validate the framework, and we make freely available our implementation.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"54 1","pages":"234-239"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Dynamic Movement Primitives (DMPs) are a framework for learning a trajectory from a demonstration. The trajectory can be learned efficiently after only one demonstration, and it is immediate to adapt it to new goal positions and time duration. Moreover, the trajectory is also robust against perturbations. However, obstacle avoidance for DMPs is still an open problem. In this work, we propose an extension of DMPs to support volumetric obstacle avoidance based on the use of superquadric potentials. We show the advantages of this approach when obstacles have known shape, and we extend it to unknown objects using minimal enclosing ellipsoids. A simulation and experiments with a real robot validate the framework, and we make freely available our implementation.
动态运动原语:体积避障
动态运动原语(Dynamic Movement Primitives, dmp)是从演示中学习轨迹的框架。只需一次演示就可以有效地学习轨迹,并且可以立即使其适应新的目标位置和持续时间。此外,该轨迹对扰动也具有鲁棒性。然而,dmp的避障仍然是一个悬而未决的问题。在这项工作中,我们提出了dmp的扩展,以支持基于使用超二次势的体积避障。我们展示了这种方法在障碍物形状已知时的优势,并使用最小的封闭椭球体将其扩展到未知物体。在一个真实的机器人上进行了仿真和实验,验证了该框架,并免费提供了我们的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信