Exploiting LightGBM Ensemble Method for Stock Prediction

Vatsal Mitesh Tailor
{"title":"Exploiting LightGBM Ensemble Method for Stock Prediction","authors":"Vatsal Mitesh Tailor","doi":"10.14299/ijser.2020.10.05","DOIUrl":null,"url":null,"abstract":"This paper leverages the LightGBM Ensemble Method to predict stock prices. First, the time features are from the dates and these generated features are used to build a regression model. Experiments are performed on the Tesla and the Coca Cola stock historical data to show the effectiveness of the method in predicting stock prices","PeriodicalId":14354,"journal":{"name":"International journal of scientific and engineering research","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of scientific and engineering research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14299/ijser.2020.10.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper leverages the LightGBM Ensemble Method to predict stock prices. First, the time features are from the dates and these generated features are used to build a regression model. Experiments are performed on the Tesla and the Coca Cola stock historical data to show the effectiveness of the method in predicting stock prices
基于LightGBM集合方法的库存量预测
本文利用LightGBM集成方法来预测股票价格。首先,从日期中提取时间特征,并使用这些生成的特征构建回归模型。对特斯拉和可口可乐的股票历史数据进行了实验,以证明该方法在预测股价方面的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信