Optimization and supervised machine learning methods for fitting numerical physics models without derivatives

Raghu Bollapragada, M. Menickelly, W. Nazarewicz, J. O'Neal, P. Reinhard, Stefan M. Wild
{"title":"Optimization and supervised machine learning methods for fitting numerical physics models without derivatives","authors":"Raghu Bollapragada, M. Menickelly, W. Nazarewicz, J. O'Neal, P. Reinhard, Stefan M. Wild","doi":"10.1088/1361-6471/abd009","DOIUrl":null,"url":null,"abstract":"We address the calibration of a computationally expensive nuclear physics model for which derivative information with respect to the fit parameters is not readily available. Of particular interest is the performance of optimization-based training algorithms when dozens, rather than millions or more, of training data are available and when the expense of the model places limitations on the number of concurrent model evaluations that can be performed. As a case study, we consider the Fayans energy density functional model, which has characteristics similar to many model fitting and calibration problems in nuclear physics. We analyze hyperparameter tuning considerations and variability associated with stochastic optimization algorithms and illustrate considerations for tuning in different computational settings.","PeriodicalId":16770,"journal":{"name":"Journal of Physics G","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6471/abd009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We address the calibration of a computationally expensive nuclear physics model for which derivative information with respect to the fit parameters is not readily available. Of particular interest is the performance of optimization-based training algorithms when dozens, rather than millions or more, of training data are available and when the expense of the model places limitations on the number of concurrent model evaluations that can be performed. As a case study, we consider the Fayans energy density functional model, which has characteristics similar to many model fitting and calibration problems in nuclear physics. We analyze hyperparameter tuning considerations and variability associated with stochastic optimization algorithms and illustrate considerations for tuning in different computational settings.
无导数数值物理模型拟合的优化和监督机器学习方法
我们解决了一个计算昂贵的核物理模型的校准,其中关于拟合参数的导数信息是不容易获得的。特别令人感兴趣的是,当有几十个而不是数百万或更多的训练数据可用时,以及当模型的费用限制了可以执行的并发模型评估的数量时,基于优化的训练算法的性能。作为案例研究,我们考虑了Fayans能量密度泛函模型,它具有与核物理中许多模型拟合和校准问题相似的特征。我们分析了与随机优化算法相关的超参数调谐考虑因素和可变性,并说明了在不同计算设置中调谐的考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信