Heterogeneous Variable Selection in Nonlinear Panel Data Models: A Semi-Parametric Bayesian Approach

A. Castelein, D. Fok, R. Paap
{"title":"Heterogeneous Variable Selection in Nonlinear Panel Data Models: A Semi-Parametric Bayesian Approach","authors":"A. Castelein, D. Fok, R. Paap","doi":"10.2139/ssrn.3697480","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a general method for heterogeneous variable selection in Bayesian nonlinear panel data models. Heterogeneous variable selection refers to the possibility that subsets of units are unaffected by certain variables. It may be present in applications as diverse as health treatments, consumer choice-making, macroeconomics, and operations research. Our method additionally allows for other forms of cross-sectional heterogeneity. We consider a two-group approach for the model's unit-specific parameters: each unit-specific parameter is either equal to zero (heterogeneous variable selection) or comes from a Dirichlet process (DP) mixture of multivariate normals (other cross-sectional heterogeneity). We develop our approach for general nonlinear panel data models, encompassing multinomial logit and probit models, poisson and negative binomial count models, exponential models, among many others. For inference, we develop an efficient Bayesian MCMC sampler. In a Monte Carlo study, we find that our approach is able to capture heterogeneous variable selection whereas a ``standard'' DP mixture is not. In an empirical application, we find that accounting for heterogeneous variable selection and non-normality of the continuous heterogeneity leads to an improved in-sample and out-of-sample performance and interesting insights. These findings illustrate the usefulness of our approach.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3697480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a general method for heterogeneous variable selection in Bayesian nonlinear panel data models. Heterogeneous variable selection refers to the possibility that subsets of units are unaffected by certain variables. It may be present in applications as diverse as health treatments, consumer choice-making, macroeconomics, and operations research. Our method additionally allows for other forms of cross-sectional heterogeneity. We consider a two-group approach for the model's unit-specific parameters: each unit-specific parameter is either equal to zero (heterogeneous variable selection) or comes from a Dirichlet process (DP) mixture of multivariate normals (other cross-sectional heterogeneity). We develop our approach for general nonlinear panel data models, encompassing multinomial logit and probit models, poisson and negative binomial count models, exponential models, among many others. For inference, we develop an efficient Bayesian MCMC sampler. In a Monte Carlo study, we find that our approach is able to capture heterogeneous variable selection whereas a ``standard'' DP mixture is not. In an empirical application, we find that accounting for heterogeneous variable selection and non-normality of the continuous heterogeneity leads to an improved in-sample and out-of-sample performance and interesting insights. These findings illustrate the usefulness of our approach.
非线性面板数据模型中的异质变量选择:半参数贝叶斯方法
本文提出了贝叶斯非线性面板数据模型中异质变量选择的一般方法。异质性变量选择是指单位子集不受某些变量影响的可能性。它可能出现在各种各样的应用中,如健康治疗、消费者选择、宏观经济学和运筹学。我们的方法还考虑了其他形式的横断面异质性。我们考虑了模型单元特定参数的两组方法:每个单元特定参数要么等于零(异质性变量选择),要么来自多元正态(其他横截面异质性)的Dirichlet过程(DP)混合物。我们开发了一般非线性面板数据模型的方法,包括多项logit和probit模型,泊松和负二项计数模型,指数模型等。对于推理,我们开发了一个高效的贝叶斯MCMC采样器。在蒙特卡罗研究中,我们发现我们的方法能够捕获异质变量选择,而“标准”DP混合物则不能。在实证应用中,我们发现,考虑异质性变量选择和连续异质性的非正态性,可以改善样本内和样本外的性能,并获得有趣的见解。这些发现说明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信