Transient Stability Improvement of a Power System with Parametric Uncertainties Using a Robust Optimal H2 State Feedback Controller

Q4 Engineering
M. M. Mirabadi, N. Abjadi, S. Hoghoughi-Isfahani, S. Shojaeian
{"title":"Transient Stability Improvement of a Power System with Parametric Uncertainties Using a Robust Optimal H2 State Feedback Controller","authors":"M. M. Mirabadi, N. Abjadi, S. Hoghoughi-Isfahani, S. Shojaeian","doi":"10.1155/2014/131680","DOIUrl":null,"url":null,"abstract":"In recent years, improvement of dynamic behavior of power systems has interested many researchers and to achieve it, various control methods are proposed. In this paper, in order to improve transient stability of power system, a robust optimal H2 state feedback is employed. In order to appropriate formulation of the problem, linear matrix inequality (LMI) theory is used. To achieve the best answer, controller parameters are tuned using particle swarm algorithm. The obtained results of the proposed method are compared to conventional power system stabilizer.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"94 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2014/131680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, improvement of dynamic behavior of power systems has interested many researchers and to achieve it, various control methods are proposed. In this paper, in order to improve transient stability of power system, a robust optimal H2 state feedback is employed. In order to appropriate formulation of the problem, linear matrix inequality (LMI) theory is used. To achieve the best answer, controller parameters are tuned using particle swarm algorithm. The obtained results of the proposed method are compared to conventional power system stabilizer.
基于鲁棒最优H2状态反馈控制器的参数不确定电力系统暂态稳定性改进
近年来,电力系统动态性能的改善引起了许多研究者的兴趣,为实现这一目标,提出了各种控制方法。为了提高电力系统的暂态稳定性,本文采用了鲁棒最优H2状态反馈。为了恰当地表述该问题,采用了线性矩阵不等式(LMI)理论。为了获得最佳答案,采用粒子群算法对控制器参数进行了调整。并与传统的电力系统稳定器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
工程设计学报
工程设计学报 Engineering-Engineering (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
2447
审稿时长
14 weeks
期刊介绍: Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信