Piaopiao Yu, Jie Guo, Fan Huang, Cheng Zhou, H. Che, Xiao Ling, Yanwen Guo
{"title":"Hierarchical Disentangled Representation Learning for Outdoor Illumination Estimation and Editing","authors":"Piaopiao Yu, Jie Guo, Fan Huang, Cheng Zhou, H. Che, Xiao Ling, Yanwen Guo","doi":"10.1109/ICCV48922.2021.01503","DOIUrl":null,"url":null,"abstract":"Data-driven sky models have gained much attention in outdoor illumination prediction recently, showing superior performance against analytical models. However, naively compressing an outdoor panorama into a low-dimensional latent vector, as existing models have done, causes two major problems. One is the mutual interference between the HDR intensity of the sun and the complex textures of the surrounding sky, and the other is the lack of fine-grained control over independent lighting factors due to the entangled representation. To address these issues, we propose a hierarchical disentangled sky model (HDSky) for outdoor illumination prediction. With this model, any outdoor panorama can be hierarchically disentangled into several factors based on three well-designed autoencoders. The first autoencoder compresses each sunny panorama into a sky vector and a sun vector with some constraints. The second autoencoder and the third autoencoder further disentangle the sun intensity and the sky intensity from the sun vector and the sky vector with several customized loss functions respectively. Moreover, a unified framework is designed to predict all-weather sky information from a single outdoor image. Through extensive experiments, we demonstrate that the proposed model significantly improves the accuracy of outdoor illumination prediction. It also allows users to intuitively edit the predicted panorama (e.g., changing the position of the sun while preserving others), without sacrificing physical plausibility.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"79 1","pages":"15293-15302"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Data-driven sky models have gained much attention in outdoor illumination prediction recently, showing superior performance against analytical models. However, naively compressing an outdoor panorama into a low-dimensional latent vector, as existing models have done, causes two major problems. One is the mutual interference between the HDR intensity of the sun and the complex textures of the surrounding sky, and the other is the lack of fine-grained control over independent lighting factors due to the entangled representation. To address these issues, we propose a hierarchical disentangled sky model (HDSky) for outdoor illumination prediction. With this model, any outdoor panorama can be hierarchically disentangled into several factors based on three well-designed autoencoders. The first autoencoder compresses each sunny panorama into a sky vector and a sun vector with some constraints. The second autoencoder and the third autoencoder further disentangle the sun intensity and the sky intensity from the sun vector and the sky vector with several customized loss functions respectively. Moreover, a unified framework is designed to predict all-weather sky information from a single outdoor image. Through extensive experiments, we demonstrate that the proposed model significantly improves the accuracy of outdoor illumination prediction. It also allows users to intuitively edit the predicted panorama (e.g., changing the position of the sun while preserving others), without sacrificing physical plausibility.