A Hierarchical Bayesian SED Model for Type Ia Supernovae in the Optical to Near-Infrared

K. Mandel, S. Thorp, G. Narayan, A. Friedman, A. Avelino
{"title":"A Hierarchical Bayesian SED Model for Type Ia Supernovae in the Optical to Near-Infrared","authors":"K. Mandel, S. Thorp, G. Narayan, A. Friedman, A. Avelino","doi":"10.1093/mnras/stab3496","DOIUrl":null,"url":null,"abstract":"While conventional Type Ia supernova (SN Ia) cosmology analyses rely primarily on rest-frame optical light curves to determine distances, SNe Ia are excellent standard candles in near-infrared (NIR) light, which is significantly less sensitive to dust extinction. A SN Ia spectral energy distribution (SED) model capable of fitting rest-frame NIR observations is necessary to fully leverage current and future SN Ia datasets from ground- and space-based telescopes including HST, LSST, JWST, and RST. We construct a hierarchical Bayesian model for SN Ia SEDs, continuous over time and wavelength, from the optical to NIR ($B$ through $H$, or $0.35 -1.8\\, \\mu$m). We model the SED as a combination of physically-distinct host galaxy dust and intrinsic spectral components. The distribution of intrinsic SEDs over time and wavelength is modelled with probabilistic functional principal components and the covariance of residual functions. We train the model on a nearby sample of 79 SNe Ia with joint optical and NIR light curves by sampling the global posterior distribution over dust and intrinsic latent variables, SED components, and population hyperparameters. The photometric distances of SNe Ia with NIR data near maximum light obtain a total RMS error of 0.10 mag with our BayeSN model, compared to 0.14 mag with SNooPy and SALT2 for the same sample. Jointly fitting the optical and NIR data of the full sample for a global host dust law, we find $R_V = 2.9 \\pm 0.2$, consistent with the Milky Way average.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/stab3496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

While conventional Type Ia supernova (SN Ia) cosmology analyses rely primarily on rest-frame optical light curves to determine distances, SNe Ia are excellent standard candles in near-infrared (NIR) light, which is significantly less sensitive to dust extinction. A SN Ia spectral energy distribution (SED) model capable of fitting rest-frame NIR observations is necessary to fully leverage current and future SN Ia datasets from ground- and space-based telescopes including HST, LSST, JWST, and RST. We construct a hierarchical Bayesian model for SN Ia SEDs, continuous over time and wavelength, from the optical to NIR ($B$ through $H$, or $0.35 -1.8\, \mu$m). We model the SED as a combination of physically-distinct host galaxy dust and intrinsic spectral components. The distribution of intrinsic SEDs over time and wavelength is modelled with probabilistic functional principal components and the covariance of residual functions. We train the model on a nearby sample of 79 SNe Ia with joint optical and NIR light curves by sampling the global posterior distribution over dust and intrinsic latent variables, SED components, and population hyperparameters. The photometric distances of SNe Ia with NIR data near maximum light obtain a total RMS error of 0.10 mag with our BayeSN model, compared to 0.14 mag with SNooPy and SALT2 for the same sample. Jointly fitting the optical and NIR data of the full sample for a global host dust law, we find $R_V = 2.9 \pm 0.2$, consistent with the Milky Way average.
Ia型超新星光学到近红外的层次贝叶斯SED模型
传统的Ia型超新星(SN Ia)宇宙学分析主要依赖于静止框架光学光曲线来确定距离,而Ia型超新星是近红外(NIR)光的优秀标准蜡烛,它对尘埃消光的敏感性明显较低。为了充分利用HST、LSST、JWST和RST等地面和天基望远镜目前和未来的Ia超新星数据集,有必要建立一个能够拟合静帧近红外观测数据的Ia超新星光谱能量分布(SED)模型。我们构建了SN Ia sd的分层贝叶斯模型,该模型随时间和波长连续,从光学到近红外($B$到$H$,或$0.35 -1.8\,\mu$m)。我们将SED建模为物理上不同的宿主星系尘埃和本征光谱成分的组合。用概率泛函主成分和残差函数的协方差来模拟本征振幅随时间和波长的分布。我们通过采样尘埃和内在潜在变量、SED分量和总体超参数的全局后验分布,在附近的79个具有联合光学和近红外光曲线的Ia型超新星样本上训练模型。使用BayeSN模型对Ia型超新星近红外数据在最大光照附近的光度距离进行测量,得到的总RMS误差为0.10 mag,而使用SNooPy和SALT2模型对同一样品进行测量得到的RMS误差为0.14 mag。对整个样品的光学和近红外数据进行拟合,得到$R_V = 2.9 \pm 0.2$,与银河系平均值一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信