Study on Likelihood-Ratio-Based Multivariate EWMA Control Chart Using Lasso

IF 1.8 Q3 MANAGEMENT
Takumi Saruhashi, Masato Ohkubo, Yasushi Nagata
{"title":"Study on Likelihood-Ratio-Based Multivariate EWMA Control Chart Using Lasso","authors":"Takumi Saruhashi, Masato Ohkubo, Yasushi Nagata","doi":"10.12776/QIP.V25I1.1552","DOIUrl":null,"url":null,"abstract":"Purpose: When applying exponentially weighted moving average (EWMA) multivariate control charts to multivariate statistical process control, in many cases, only some elements of the controlled parameters change. In such situations, control charts applying Lasso are useful. This study proposes a novel multivariate control chart that assumes that only a few elements of the controlled parameters change. Methodology/Approach: We applied Lasso to the conventional likelihood ratiobased EWMA chart; specifically, we considered a multivariate control chart based on a log-likelihood ratio with sparse estimators of the mean vector and variance-covariance matrix. Findings: The results show that 1) it is possible to identify which elements have changed by confirming each sparse estimated parameter, and 2) the proposed procedure outperforms the conventional likelihood ratio-based EWMA chart regardless of the number of parameter elements that change. Research Limitation/Implication: We perform sparse estimation under the assumption that the regularization parameters are known. However, the regularization parameters are often unknown in real life; therefore, it is necessary to discuss how to determine them. Originality/Value of paper: The study provides a natural extension of the conventional likelihood ratio-based EWMA chart to improve interpretability and detection accuracy. Our procedure is expected to solve challenges created by changes in a few elements of the population mean vector and population variance-covariance matrix. Category: Research paper QUALITY INNOVATION PROSPERITY / KVALITA INOVÁCIA PROSPERITA 25/1 – 2021 ISSN 1335-1745 (print) ISSN 1338-984X (online) 4","PeriodicalId":44057,"journal":{"name":"Quality Innovation Prosperity-Kvalita Inovacia Prosperita","volume":"18 1","pages":"3-15"},"PeriodicalIF":1.8000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Innovation Prosperity-Kvalita Inovacia Prosperita","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12776/QIP.V25I1.1552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: When applying exponentially weighted moving average (EWMA) multivariate control charts to multivariate statistical process control, in many cases, only some elements of the controlled parameters change. In such situations, control charts applying Lasso are useful. This study proposes a novel multivariate control chart that assumes that only a few elements of the controlled parameters change. Methodology/Approach: We applied Lasso to the conventional likelihood ratiobased EWMA chart; specifically, we considered a multivariate control chart based on a log-likelihood ratio with sparse estimators of the mean vector and variance-covariance matrix. Findings: The results show that 1) it is possible to identify which elements have changed by confirming each sparse estimated parameter, and 2) the proposed procedure outperforms the conventional likelihood ratio-based EWMA chart regardless of the number of parameter elements that change. Research Limitation/Implication: We perform sparse estimation under the assumption that the regularization parameters are known. However, the regularization parameters are often unknown in real life; therefore, it is necessary to discuss how to determine them. Originality/Value of paper: The study provides a natural extension of the conventional likelihood ratio-based EWMA chart to improve interpretability and detection accuracy. Our procedure is expected to solve challenges created by changes in a few elements of the population mean vector and population variance-covariance matrix. Category: Research paper QUALITY INNOVATION PROSPERITY / KVALITA INOVÁCIA PROSPERITA 25/1 – 2021 ISSN 1335-1745 (print) ISSN 1338-984X (online) 4
基于似然比的Lasso多元EWMA控制图研究
目的:将指数加权移动平均(exponential weighted moving average, EWMA)多元控制图应用于多元统计过程控制时,在很多情况下,被控参数只有部分要素发生变化。在这种情况下,应用套索的控制图是有用的。本研究提出了一种新的多元控制图,它假设被控参数中只有少数元素发生变化。方法/方法:我们将Lasso应用于传统的基于似然比的EWMA图;具体来说,我们考虑了一个基于对数似然比的多元控制图,该控制图具有均值向量和方差协方差矩阵的稀疏估计。结果表明:1)通过确认每个稀疏估计参数可以识别哪些元素发生了变化;2)无论参数元素的变化数量如何,所提出的程序都优于传统的基于似然比的EWMA图。研究局限/启示:我们在正则化参数已知的假设下进行稀疏估计。然而,在现实生活中,正则化参数往往是未知的;因此,有必要讨论如何确定它们。论文的原创性/价值:该研究为传统的基于似然比的EWMA图表提供了自然扩展,以提高可解释性和检测精度。我们的程序有望解决由总体均值向量和总体方差-协方差矩阵的几个元素的变化所带来的挑战。分类:研究论文QUALITY INNOVATION PROSPERITY / KVALITA INOVÁCIA PROSPERITA 25/1 - 2021 ISSN 1335-1745(打印)ISSN 1338-984X(在线
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
13.30%
发文量
16
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信