Mingwei Liu, Yuanxin Wang, Lijia Luo, Bao Shiyi, Bo Jia, Xuesheng Li, Wuji Ding
{"title":"Segmented Line Heat Source Model for Thermal Radiation Calculation of Jet Fires in Chemical Plants","authors":"Mingwei Liu, Yuanxin Wang, Lijia Luo, Bao Shiyi, Bo Jia, Xuesheng Li, Wuji Ding","doi":"10.1115/1.4062782","DOIUrl":null,"url":null,"abstract":"\n The jet fire caused by the leakage of combustible materials is one of the biggest threats to the safety of chemical plants. Thermal radiation of the jet fire brings severe damage to nearby facilities and people's health. To evaluate the damage of jet fires, a precise model for the calculation of heat radiation is indispensable. Classical thermal radiation models of jet fires either have a lower prediction accuracy or a higher computation complexity. To overcome such deficiencies, this paper proposes a novel segmented line heat source (SLHS) model for jet fires. Because the length of the jet fire is often much larger than the width, the jet fire is viewed as a line heat source, with all the heat radiated from the centerline of the jet fire. The jet fire is divided into three segments along the flame length according to the temperature distribution and thermal radiation characteristics of the flame. Based on the SLHS model, three types of thermal radiation models, called cone-cylinder-cone, ellipsoid-cylinder-ellipsoid and ellipsoid-cylinder-cone models, are built for computing the radiant heat flux distribution around the jet fire. The effectiveness and advantages of the proposed models are illustrated with the experimental data and a numerical simulation.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"54 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062782","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The jet fire caused by the leakage of combustible materials is one of the biggest threats to the safety of chemical plants. Thermal radiation of the jet fire brings severe damage to nearby facilities and people's health. To evaluate the damage of jet fires, a precise model for the calculation of heat radiation is indispensable. Classical thermal radiation models of jet fires either have a lower prediction accuracy or a higher computation complexity. To overcome such deficiencies, this paper proposes a novel segmented line heat source (SLHS) model for jet fires. Because the length of the jet fire is often much larger than the width, the jet fire is viewed as a line heat source, with all the heat radiated from the centerline of the jet fire. The jet fire is divided into three segments along the flame length according to the temperature distribution and thermal radiation characteristics of the flame. Based on the SLHS model, three types of thermal radiation models, called cone-cylinder-cone, ellipsoid-cylinder-ellipsoid and ellipsoid-cylinder-cone models, are built for computing the radiant heat flux distribution around the jet fire. The effectiveness and advantages of the proposed models are illustrated with the experimental data and a numerical simulation.
期刊介绍:
Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.