Zebang Shen, Yichong Xu, Muchen Sun, Alexander Carballo, Qingguo Zhou
{"title":"3D Map Optimization with Fully Convolutional Neural Network and Dynamic Local NDT","authors":"Zebang Shen, Yichong Xu, Muchen Sun, Alexander Carballo, Qingguo Zhou","doi":"10.1109/ITSC.2019.8917130","DOIUrl":null,"url":null,"abstract":"Due to multi-path effects, GNSS-based localization methods are not always reliable in urban transportation scenes. To solve this problem, matching-based methods, which compare the real-time sensor data with a prior map, are widely used for urban autonomous driving. In these methods, high-precision noise-free 3D map plays an essential role in vehicle localization. This paper proposes a 3D map optimization framework to generate such map with high efficiency and low memory consumption. First, a deep learning based method is designed to automatically filter out non-map objects in mobile laser scans during mapping. Then, a method named dynamic local NDT is introduced for mapping and localization to improve efficiency and reduce memory usage. Furthermore, a road segmentation method is exploited for further optimization. The proposed framework only relies on LIDAR and GNSS-INS, which makes it simple and easily conducted. The mapping and positioning experimental results show that the proposed framework outperforms the conventional NDT method.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"116 1","pages":"4404-4411"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Due to multi-path effects, GNSS-based localization methods are not always reliable in urban transportation scenes. To solve this problem, matching-based methods, which compare the real-time sensor data with a prior map, are widely used for urban autonomous driving. In these methods, high-precision noise-free 3D map plays an essential role in vehicle localization. This paper proposes a 3D map optimization framework to generate such map with high efficiency and low memory consumption. First, a deep learning based method is designed to automatically filter out non-map objects in mobile laser scans during mapping. Then, a method named dynamic local NDT is introduced for mapping and localization to improve efficiency and reduce memory usage. Furthermore, a road segmentation method is exploited for further optimization. The proposed framework only relies on LIDAR and GNSS-INS, which makes it simple and easily conducted. The mapping and positioning experimental results show that the proposed framework outperforms the conventional NDT method.