A 83fps 1080P resolution 354 mW silicon implementation for computing the improved robust feature in affine space

S. Yin, P. Ouyang, Leibo Liu, Shaojun Wei
{"title":"A 83fps 1080P resolution 354 mW silicon implementation for computing the improved robust feature in affine space","authors":"S. Yin, P. Ouyang, Leibo Liu, Shaojun Wei","doi":"10.1109/CICC.2015.7338481","DOIUrl":null,"url":null,"abstract":"In comparison with the popular feature algorithms in vision applications, AFFINE-SIFT (ASIFT) achieves the highest robustness in terms of illumination, rotation, and scale in affine space but exhibits high computation complexity. This work proposes three optimization techniques, including reverse based pipelined affine computing, full parallel Gaussian pyramid computing and rotation invariant binary pattern (RIBP) based feature vector computing, to accelerate the computation intensive parts in ASIFT, and design a high efficient pipelined and parallel architecture for the whole ASIFT. Using TSMC 65 nm process, silicon implementation shows that this work achieves the processing speed of 83fps@1080p (1000 feature points per frame on average) with 200 MHz while dissipating 354 mW. It fully supports the real time processing of high resolution images in vision scenes with strong robustness.","PeriodicalId":6665,"journal":{"name":"2015 IEEE Custom Integrated Circuits Conference (CICC)","volume":"86 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2015.7338481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In comparison with the popular feature algorithms in vision applications, AFFINE-SIFT (ASIFT) achieves the highest robustness in terms of illumination, rotation, and scale in affine space but exhibits high computation complexity. This work proposes three optimization techniques, including reverse based pipelined affine computing, full parallel Gaussian pyramid computing and rotation invariant binary pattern (RIBP) based feature vector computing, to accelerate the computation intensive parts in ASIFT, and design a high efficient pipelined and parallel architecture for the whole ASIFT. Using TSMC 65 nm process, silicon implementation shows that this work achieves the processing speed of 83fps@1080p (1000 feature points per frame on average) with 200 MHz while dissipating 354 mW. It fully supports the real time processing of high resolution images in vision scenes with strong robustness.
83fps 1080P分辨率354mw硅实现,用于计算改进的仿射空间鲁棒特性
与视觉应用中流行的特征算法相比,仿射- sift (affine - sift, ASIFT)在仿射空间的光照、旋转和尺度方面具有最高的鲁棒性,但其计算复杂度较高。本文提出了基于逆向的流水线仿射计算、全并行高斯金字塔计算和基于旋转不变二进制模式(RIBP)的特征向量计算三种优化技术,以加快ASIFT中计算密集型部分的速度,并为整个ASIFT设计了高效的流水线并行架构。采用台积电65nm工艺的硅实现表明,该工作在200mhz下实现了83fps@1080p(平均每帧1000个特征点)的处理速度,而功耗为354mw。完全支持视觉场景下高分辨率图像的实时处理,鲁棒性强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信