Khovanskii-Finite Rational Curves of Arithmetic Genus 2

IF 0.8 3区 数学 Q2 MATHEMATICS
N. Ilten, Ahmad Mokhtar
{"title":"Khovanskii-Finite Rational Curves of Arithmetic Genus 2","authors":"N. Ilten, Ahmad Mokhtar","doi":"10.1307/mmj/20216048","DOIUrl":null,"url":null,"abstract":"We study the existence of Khovanskii-finite valuations for rational curves of arithmetic genus two. We provide a semi-explicit description of the locus of degree n+ 2 rational curves in Pn of arithmetic genus two that admit a Khovanskii-finite valuation. Furthermore, we describe an effective method for determining if a rational curve of arithmetic genus two defined over a number field admits a Khovanskii-finite valuation. This provides a criterion for deciding if such curves admit a toric degeneration. Finally, we show that rational curves with a single unibranch singularity are always Khovanskii-finite if their arithmetic genus is sufficiently small.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216048","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the existence of Khovanskii-finite valuations for rational curves of arithmetic genus two. We provide a semi-explicit description of the locus of degree n+ 2 rational curves in Pn of arithmetic genus two that admit a Khovanskii-finite valuation. Furthermore, we describe an effective method for determining if a rational curve of arithmetic genus two defined over a number field admits a Khovanskii-finite valuation. This provides a criterion for deciding if such curves admit a toric degeneration. Finally, we show that rational curves with a single unibranch singularity are always Khovanskii-finite if their arithmetic genus is sufficiently small.
khovanski -算术格2的有限有理曲线
研究了算术二格有理曲线的khovanski有限赋值的存在性。我们给出了算术2属Pn中n+ 2次有理曲线轨迹的一个半显式描述,这些曲线承认khovanski有限值。在此基础上,给出了一种确定在数域上定义的算术属2的有理曲线是否存在khovanski有限值的有效方法。这就提供了一个判定这类曲线是否承认环形退变的标准。最后,我们证明了具有单分支奇点的有理曲线在算术格足够小的情况下总是khovanski有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信