Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification

Ni Putu Gita Naraswati, Rani Nooraeni, Delvira Cindy Rosmilda, Dinda Desinta, Fadhilatul Khairi, Riska Damaiyanti
{"title":"Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification","authors":"Ni Putu Gita Naraswati, Rani Nooraeni, Delvira Cindy Rosmilda, Dinda Desinta, Fadhilatul Khairi, Riska Damaiyanti","doi":"10.32520/STMSI.V10I1.1179","DOIUrl":null,"url":null,"abstract":"Abstrak Beberapa bulan terakhir, penanganan COVID-19 menjadi salah satu permasalahan kompleks yang dihadapi oleh hampir seluruh negara di dunia. Menilik dari hal tersebut, pemerintah membentuk kebijakan guna mencegah semakin meluasnya penyebaran virus diantaranya Pembatasan Sosial Berskala Besar (PSBB), wajib masker, dan jam malam. Kebijakan tersebut mendapat tanggapan yang beragam, tidak terkecuali di media sosial seperti twitter. Berdaarkan hal tersebut, penelitian ini bertujuan untuk menganalisis sentimen publik dari cuitan Twitter mengenai penanganan COVID-19 di Indonesia. Adapun metode yang digunakan Naive Bayes Classification karena memiliki algoritma yang sederhana dengan akurasi yang tinggi. Hasil penelitian menunjukkan, masyarakat lebih banyak memberikan sentimen negatif terhadap kebijakan penanganan COVID-19 khususnya PSBB, wajib masker, dan jam malam. Pada sentimen positif, tiga kata dengan frekuensi kemunculan terbanyak yaitu demo, jakarta, dan kerja. Sedangkan pada sentimen negatif yaitu jakarta, demo, dan orang. Kemunculan kata “demo” dan “jakarta” pada kedua sentimen menunjukkan bahwa tweet masyarakat mengenai kebijakan penanganan COVID-19 tidak lepas dari peristiwa/kejadian saat pengumpulan data dilakukan. Selain itu, tingginya frekuensi kata “jakarta” pada sentimen negatif juga menunjukkan bahwa pelaksanaan kebijakan penanganan COVID-19 di Jakarta belum dilaksanakan secara optimal. Berdasarkan hasil evaluasi, diperoleh tingkat akurasi klasifikasi sebesar 87,34%, sensitivitas sebesar 93,43%, dan spesifisitas 71,76% yang berarti metode ini sudah cukup baik. Kata Kunci: COVID-19 , naive bayes classification , kebijakan, text mining , twitter Abstract In recent months, handling COVID-19 has become one of the complex problems faced by almost all countries in the world. In view of this, the government formed policies to prevent the spread of the virus, including Large-Scale Social Restrictions (PSBB), mandatory masks, and curfews. This policy received various responses, including on social media such as Twitter. Based on this, this study aims to analyze public sentiment from Twitter tweets regarding the handling of COVID-19 in Indonesia. The method used is the Naive Bayes Classification because it has a simple algorithm with high accuracy. The results showed that the public gave more negative sentiments towards the policy of handling COVID-19, especially PSBB, mandatory masks, and curfews. On the positive sentiment, the three words with the highest frequency were “demo”, “jakarta”, and “work”. Meanwhile, the negative sentiment is “jakarta”, “demo”, and “orang”. The appearance of the words \"demo\" and \"jakarta\" in both sentiments shows that the public's tweet regarding the policy for handling COVID-19 cannot be separated from the events / incidents when data collection was carried out. In addition, the high frequency of the word “jakarta” in negative sentiments also shows that the implementation of policies for handling COVID-19 in Jakarta has not been implemented optimally. Based on the evaluation results, the classification accuracy rate is 87.34%, the sensitivity is 93.43%, and the specificity is 71.76%, which means that this method is good enough. Keywords: COVID-19, naive bayes classification , policy, text mining, twitter","PeriodicalId":32367,"journal":{"name":"Sistemasi Jurnal Sistem Informasi","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sistemasi Jurnal Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32520/STMSI.V10I1.1179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Abstrak Beberapa bulan terakhir, penanganan COVID-19 menjadi salah satu permasalahan kompleks yang dihadapi oleh hampir seluruh negara di dunia. Menilik dari hal tersebut, pemerintah membentuk kebijakan guna mencegah semakin meluasnya penyebaran virus diantaranya Pembatasan Sosial Berskala Besar (PSBB), wajib masker, dan jam malam. Kebijakan tersebut mendapat tanggapan yang beragam, tidak terkecuali di media sosial seperti twitter. Berdaarkan hal tersebut, penelitian ini bertujuan untuk menganalisis sentimen publik dari cuitan Twitter mengenai penanganan COVID-19 di Indonesia. Adapun metode yang digunakan Naive Bayes Classification karena memiliki algoritma yang sederhana dengan akurasi yang tinggi. Hasil penelitian menunjukkan, masyarakat lebih banyak memberikan sentimen negatif terhadap kebijakan penanganan COVID-19 khususnya PSBB, wajib masker, dan jam malam. Pada sentimen positif, tiga kata dengan frekuensi kemunculan terbanyak yaitu demo, jakarta, dan kerja. Sedangkan pada sentimen negatif yaitu jakarta, demo, dan orang. Kemunculan kata “demo” dan “jakarta” pada kedua sentimen menunjukkan bahwa tweet masyarakat mengenai kebijakan penanganan COVID-19 tidak lepas dari peristiwa/kejadian saat pengumpulan data dilakukan. Selain itu, tingginya frekuensi kata “jakarta” pada sentimen negatif juga menunjukkan bahwa pelaksanaan kebijakan penanganan COVID-19 di Jakarta belum dilaksanakan secara optimal. Berdasarkan hasil evaluasi, diperoleh tingkat akurasi klasifikasi sebesar 87,34%, sensitivitas sebesar 93,43%, dan spesifisitas 71,76% yang berarti metode ini sudah cukup baik. Kata Kunci: COVID-19 , naive bayes classification , kebijakan, text mining , twitter Abstract In recent months, handling COVID-19 has become one of the complex problems faced by almost all countries in the world. In view of this, the government formed policies to prevent the spread of the virus, including Large-Scale Social Restrictions (PSBB), mandatory masks, and curfews. This policy received various responses, including on social media such as Twitter. Based on this, this study aims to analyze public sentiment from Twitter tweets regarding the handling of COVID-19 in Indonesia. The method used is the Naive Bayes Classification because it has a simple algorithm with high accuracy. The results showed that the public gave more negative sentiments towards the policy of handling COVID-19, especially PSBB, mandatory masks, and curfews. On the positive sentiment, the three words with the highest frequency were “demo”, “jakarta”, and “work”. Meanwhile, the negative sentiment is “jakarta”, “demo”, and “orang”. The appearance of the words "demo" and "jakarta" in both sentiments shows that the public's tweet regarding the policy for handling COVID-19 cannot be separated from the events / incidents when data collection was carried out. In addition, the high frequency of the word “jakarta” in negative sentiments also shows that the implementation of policies for handling COVID-19 in Jakarta has not been implemented optimally. Based on the evaluation results, the classification accuracy rate is 87.34%, the sensitivity is 93.43%, and the specificity is 71.76%, which means that this method is good enough. Keywords: COVID-19, naive bayes classification , policy, text mining, twitter
几个月来,处理COVID-19一直是世界上几乎所有国家面临的复杂问题之一。鉴于此,各国政府制定了一项政策,以防止大规模的社会限制(PSBB)、强制集会和宵禁之间的病毒传播。该政策得到了广泛的回应,twitter等社交媒体也不例外。基于此,本研究的目的是分析Twitter上关于COVID-19处理程序的公众情绪。至于天真的Bayes古典主义的方法,它有一个非常简单的算法,非常准确。研究表明,公众对COVID-19应对政策的负面情绪越来越强烈,尤其是PSBB、义务面具和宵禁。在积极的方面,出现最多的三个词是demo, jakarta和功。而在负面情绪中,雅加达,demo和人。“demo”和“jakarta”这两种情绪的出现表明,公众对COVID-19处理政策的推文在收集数据的过程中是不可避免的。此外,“雅加达”一词在负面情绪上的高频率还表明,雅加达的COVID-19应对政策的实施并没有得到最充分的实施。根据评估结果,分类准确率为87.34%,敏感性为93.43%,特异性为71.76%,这意味着这种方法相当好。关键字:COVID-19、天真的bayes古典主义、政策、短信挖掘、twitter摘要从这个观点来看,政府授权政策预防病毒的传播,包括大规模的社会限制、mandatory masks和curfews。这项政策收到了类似Twitter的社交媒体。基于这一点,这是对来自Twitter Twitter Twitter引用的COVID-19的公共分析研究简报的研究。使用的方法是天真的经典定位,因为它有一个非常精确的算法。结果表明,公众提供了更多负面情感来代替处理COVID-19的政策,特别是PSBB、mandatory masks和curfews。在积极情绪上,三个最常见的词是“演示”、“雅加达”和“工作”。然而,负面情绪是“雅加达”、“示威”和“人”。“示威”和“雅加达”这两句话的含义都表明,公众发的推文规定,在数据采集时,不能与事件隔离。简而言之,“雅加达”一词的高频率视频还显示,在雅加达,用于处理COVID-19的政策的实施并不是优化的。基于估值结果,经典估计率是87.34%,敏感性是93.43%,而鉴别率是71.76%,这意味着这种方法已经足够好了。Keywords: COVID-19,天真的bayes古典主义,政策,短信挖掘,twitter
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
66
审稿时长
43 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信