Dynamic Fracture Toughness Behaviour of CFRP-Foam-CFRP Sandwich Composite and Particles Filled Hybrid Glass Fiber Cloth, Graphene Nanoplates Coated Glass Fiber Strand Composite Materials under Low Impact Velocity

V. Srivastava
{"title":"Dynamic Fracture Toughness Behaviour of CFRP-Foam-CFRP Sandwich Composite and Particles Filled Hybrid Glass Fiber Cloth, Graphene Nanoplates Coated Glass Fiber Strand Composite Materials under Low Impact Velocity","authors":"V. Srivastava","doi":"10.5539/jmsr.v11n1p70","DOIUrl":null,"url":null,"abstract":"The main objective of the present study is to investigate the dynamic fracture toughness behaviors of CFRP-Foam-CFRP sandwich composite of V-notched through -thickness, surface, and un-notched specimens under Izod, and Charpy impact tests.  The sandwich composite structures are made of cross-plied carbon fiber reinforced plastic (CFRP) composite faces with polyurethane foam core. CFRP composites are used to combine the upper face and the lower face through the core in stitched sandwich structures. Compressive strength of weight drop impact perforated and un-perforated sandwich composite specimens are measured from a universal testing machine. Also, particles (Al2O3, CNTs, and cement) filled glass fiber cloth and graphene nanoplates coated glass fiber strands reinforced polymer hybrid composite are fabricated for V-notched, un-notched Izod impact and Charpy impact tests. The results show that weight drop impact energy is lower than the Izod impact energy but higher than the Charpy impact energy, whereas the dynamic fracture toughness of Izod impact energy is more than the Charpy and weight drop impact energy due to geometry of impactor and sandwich specimen. However energy and dynamic fracture toughness of Al2O3, CNTs, and Cement filled un-notched hybrid composites higher than the notched hybrid composites under Izod Impact. The dynamic fracture toughness and energy of CNTs filled hybrid composites is higher than the sandwich composites, Al2O3, and Cement filled hybrid composites under Charpy Impact.","PeriodicalId":16111,"journal":{"name":"Journal of Materials Science Research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmsr.v11n1p70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main objective of the present study is to investigate the dynamic fracture toughness behaviors of CFRP-Foam-CFRP sandwich composite of V-notched through -thickness, surface, and un-notched specimens under Izod, and Charpy impact tests.  The sandwich composite structures are made of cross-plied carbon fiber reinforced plastic (CFRP) composite faces with polyurethane foam core. CFRP composites are used to combine the upper face and the lower face through the core in stitched sandwich structures. Compressive strength of weight drop impact perforated and un-perforated sandwich composite specimens are measured from a universal testing machine. Also, particles (Al2O3, CNTs, and cement) filled glass fiber cloth and graphene nanoplates coated glass fiber strands reinforced polymer hybrid composite are fabricated for V-notched, un-notched Izod impact and Charpy impact tests. The results show that weight drop impact energy is lower than the Izod impact energy but higher than the Charpy impact energy, whereas the dynamic fracture toughness of Izod impact energy is more than the Charpy and weight drop impact energy due to geometry of impactor and sandwich specimen. However energy and dynamic fracture toughness of Al2O3, CNTs, and Cement filled un-notched hybrid composites higher than the notched hybrid composites under Izod Impact. The dynamic fracture toughness and energy of CNTs filled hybrid composites is higher than the sandwich composites, Al2O3, and Cement filled hybrid composites under Charpy Impact.
低冲击速度下cfrp -泡沫- cfrp夹层复合材料及颗粒填充杂化玻璃纤维布、石墨烯纳米片涂覆玻璃纤维股复合材料的动态断裂韧性行为
本研究的主要目的是研究cfrp -泡沫- cfrp夹层复合材料的v形缺口穿透厚度、表面和未缺口试样在Izod和Charpy冲击试验下的动态断裂韧性行为。夹层复合材料结构是由碳纤维增强塑料(CFRP)复合材料面与聚氨酯泡沫芯交叉层合而成。采用CFRP复合材料通过缝芯将上、下表面结合在一起。在万能试验机上测定了有孔和无孔夹层复合材料试样的抗压强度。此外,还制备了填充玻璃纤维布的颗粒(Al2O3、CNTs和水泥)和涂覆石墨烯纳米板的玻璃纤维股增强聚合物杂化复合材料,用于v形缺口、非缺口Izod冲击和Charpy冲击试验。结果表明:由于冲击体和夹层试样的几何特性,失重冲击能低于伊佐德冲击能,但高于查比冲击能,而伊佐德冲击能的动态断裂韧性大于查比冲击能和失重冲击能。而Al2O3、CNTs和水泥填充的非缺口杂化复合材料在Izod冲击下的能量和动态断裂韧性高于缺口杂化复合材料。在Charpy冲击作用下,CNTs填充复合材料的动态断裂韧性和能量均高于夹层复合材料、Al2O3和水泥填充复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信