Mathematical Foundations for Participation Ontologies

Carmen S. Chui, M. Grüninger
{"title":"Mathematical Foundations for Participation Ontologies","authors":"Carmen S. Chui, M. Grüninger","doi":"10.3233/978-1-61499-438-1-105","DOIUrl":null,"url":null,"abstract":"The notion of participation as a relation between objects, activities, and time has been axiomatized in various ontologies. In this paper, we focus on three of these ontologies – PSL-Core, Gangemi’s axioms, and DOLCE. We provide a verification of these participation ontologies by introducing ontologies for new classes of mathematical structures known as incidence bundles and incidence foliations. The new mathematical ontologies serve as reusable ontology design patterns for participation, and also are the basis for mappings between the different participation ontologies. Finally, we illustrate the concept of ontology transfer through the use of these ontology design patterns.","PeriodicalId":90829,"journal":{"name":"Formal ontology in information systems : proceedings of the ... International Conference. FOIS (Conference)","volume":"182 1","pages":"105-118"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formal ontology in information systems : proceedings of the ... International Conference. FOIS (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-61499-438-1-105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The notion of participation as a relation between objects, activities, and time has been axiomatized in various ontologies. In this paper, we focus on three of these ontologies – PSL-Core, Gangemi’s axioms, and DOLCE. We provide a verification of these participation ontologies by introducing ontologies for new classes of mathematical structures known as incidence bundles and incidence foliations. The new mathematical ontologies serve as reusable ontology design patterns for participation, and also are the basis for mappings between the different participation ontologies. Finally, we illustrate the concept of ontology transfer through the use of these ontology design patterns.
参与本体的数学基础
作为对象、活动和时间之间关系的参与概念在各种本体论中已经被公理化。在本文中,我们关注其中的三个本体- PSL-Core, Gangemi公理和DOLCE。我们通过引入关联束和关联叶的新数学结构类的本体来验证这些参与本体。新的数学本体作为可重用的参与本体设计模式,也是不同参与本体之间映射的基础。最后,我们通过使用这些本体设计模式来说明本体转移的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信