Itô's formula for noncommutative $C^2$ functions of free Itô processes

IF 0.9 3区 数学 Q2 MATHEMATICS
Evangelos A. Nikitopoulos
{"title":"Itô's formula for noncommutative $C^2$ functions of free Itô processes","authors":"Evangelos A. Nikitopoulos","doi":"10.4171/dm/902","DOIUrl":null,"url":null,"abstract":"In a recent paper, the author introduced a rich class NC(R) of “noncommutative C” functions R → C whose operator functional calculus is k-times differentiable and has derivatives expressible in terms of multiple operator integrals (MOIs). In the present paper, we explore a connection between free stochastic calculus and the theory of MOIs by proving an Itô formula for noncommutative C functions of self-adjoint free Itô processes. To do this, we first extend P. Biane and R. Speicher’s theory of free stochastic calculus – including their free Itô formula for polynomials – to allow free Itô processes driven by multiple freely independent semicircular Brownian motions. Then, in the self-adjoint case, we reinterpret the objects appearing in the free Itô formula for polynomials in terms of MOIs. This allows us to enlarge the class of functions for which one can formulate and prove a free Itô formula from the space originally considered by Biane and Speicher (Fourier transforms of complex measures with two finite moments) to the strictly larger space NC(R). Along the way, we also obtain a useful “traced” Itô formula for arbitrary C scalar functions of self-adjoint free Itô processes. Finally, as motivation, we study an Itô formula for C scalar functions of N ×N Hermitian matrix Itô processes. Keyphrases: free probability, free stochastic calculus, matrix stochastic calculus, Itô formula, functional calculus, multiple operator integral Mathematics Subject Classification: 46L54, 47A60, 60H05","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"103 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/902","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In a recent paper, the author introduced a rich class NC(R) of “noncommutative C” functions R → C whose operator functional calculus is k-times differentiable and has derivatives expressible in terms of multiple operator integrals (MOIs). In the present paper, we explore a connection between free stochastic calculus and the theory of MOIs by proving an Itô formula for noncommutative C functions of self-adjoint free Itô processes. To do this, we first extend P. Biane and R. Speicher’s theory of free stochastic calculus – including their free Itô formula for polynomials – to allow free Itô processes driven by multiple freely independent semicircular Brownian motions. Then, in the self-adjoint case, we reinterpret the objects appearing in the free Itô formula for polynomials in terms of MOIs. This allows us to enlarge the class of functions for which one can formulate and prove a free Itô formula from the space originally considered by Biane and Speicher (Fourier transforms of complex measures with two finite moments) to the strictly larger space NC(R). Along the way, we also obtain a useful “traced” Itô formula for arbitrary C scalar functions of self-adjoint free Itô processes. Finally, as motivation, we study an Itô formula for C scalar functions of N ×N Hermitian matrix Itô processes. Keyphrases: free probability, free stochastic calculus, matrix stochastic calculus, Itô formula, functional calculus, multiple operator integral Mathematics Subject Classification: 46L54, 47A60, 60H05
Itô关于自由Itô过程的非交换$C^2$函数的公式
本文介绍了一类“非交换C”函数R→C的富类NC(R),该类函数的算子泛函演算是k倍可微的,其导数可以用多重算子积分表示。本文通过证明自伴随自由Itô过程的非交换C函数的Itô公式,探讨了自由随机微积分与moi理论之间的联系。为此,我们首先扩展了P. Biane和R. Speicher的自由随机微积分理论——包括他们的自由Itô多项式公式——以允许由多个自由独立的半圆布朗运动驱动的自由Itô过程。然后,在自伴随情况下,我们根据moi重新解释出现在多项式自由Itô公式中的对象。这允许我们将函数的范围扩大,我们可以从Biane和Speicher最初考虑的空间(具有两个有限矩的复测度的傅里叶变换)中推导和证明一个自由的Itô公式到严格更大的空间NC(R)。在此过程中,我们还得到了任意自伴随自由Itô过程的C标量函数的一个有用的“跟踪”Itô公式。最后,作为激励,我们研究了N个×N厄米矩阵Itô过程的C标量函数的Itô公式。关键词:自由概率,自由随机微积分,矩阵随机微积分,Itô公式,泛函微积分,多重算子积分数学学科分类:46L54, 47A60, 60H05
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信