Searching for Near-Duplicate Video Sequences from a Scalable Sequence Aligner

Leonardo S. de Oliveira, Zenilton K. G. Patrocínio, S. Guimarães, G. Gravier
{"title":"Searching for Near-Duplicate Video Sequences from a Scalable Sequence Aligner","authors":"Leonardo S. de Oliveira, Zenilton K. G. Patrocínio, S. Guimarães, G. Gravier","doi":"10.1109/ISM.2013.42","DOIUrl":null,"url":null,"abstract":"Near-duplicate video sequence identification consists in identifying real positions of a specific video clip in a video stream stored in a database. To address this problem, we propose a new approach based on a scalable sequence aligner borrowed from proteomics. Sequence alignment is performed on symbolic representations of features extracted from the input videos, based on an algorithm originally applied to bio-informatics. Experimental results demonstrate that our method performance achieved 94% recall with 100% precision, with an average searching time of about 1 second.","PeriodicalId":6311,"journal":{"name":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","volume":"21 1","pages":"223-226"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2013.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Near-duplicate video sequence identification consists in identifying real positions of a specific video clip in a video stream stored in a database. To address this problem, we propose a new approach based on a scalable sequence aligner borrowed from proteomics. Sequence alignment is performed on symbolic representations of features extracted from the input videos, based on an algorithm originally applied to bio-informatics. Experimental results demonstrate that our method performance achieved 94% recall with 100% precision, with an average searching time of about 1 second.
搜索近重复的视频序列从一个可扩展的序列对齐器
近重复视频序列识别包括识别存储在数据库中的视频流中特定视频片段的真实位置。为了解决这个问题,我们提出了一种基于可扩展序列比对器的新方法,该方法借鉴了蛋白质组学。序列比对是基于一种最初应用于生物信息学的算法,对从输入视频中提取的特征进行符号表示。实验结果表明,该方法的查全率为94%,查准率为100%,平均搜索时间约为1秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信