Nonparametric Versus Parametric Reasoning Based on 2×2 Contingency Tables

P. Sulewski
{"title":"Nonparametric Versus Parametric Reasoning Based on 2×2 Contingency Tables","authors":"P. Sulewski","doi":"10.12921/cmst.2018.0000009","DOIUrl":null,"url":null,"abstract":"This paper proposes scenarios of generating contingency tables (CTs) with the probability flow parameter (PFP). It also defines measures of untruthfulness of H0 that involve PFP for all proposed scenarios. This paper is an attempt to replace a nonparametric statistical inference method by the parametric one. The paper applies the maximum likelihood method to estimate PFP and presents instructions to generate CTs by means of the bar method. The Monte Carlo method is used to carry out computer simulations.","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/cmst.2018.0000009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes scenarios of generating contingency tables (CTs) with the probability flow parameter (PFP). It also defines measures of untruthfulness of H0 that involve PFP for all proposed scenarios. This paper is an attempt to replace a nonparametric statistical inference method by the parametric one. The paper applies the maximum likelihood method to estimate PFP and presents instructions to generate CTs by means of the bar method. The Monte Carlo method is used to carry out computer simulations.
基于2×2列联表的非参数与参数推理
本文提出了用概率流参数(PFP)生成列联表的方案。它还定义了H0不真实性的度量,包括所有提议场景的PFP。本文是用参数统计推理方法代替非参数统计推理方法的一次尝试。本文应用极大似然法估计PFP,并给出了用柱形法生成ct的说明。采用蒙特卡罗方法进行计算机模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信