Steady states of an Elo-type rating model for players of varying strength

IF 1 4区 数学 Q1 MATHEMATICS
Bertram During, J. Evans, Marie-Therese Wolfram
{"title":"Steady states of an Elo-type rating model for players of varying strength","authors":"Bertram During, J. Evans, Marie-Therese Wolfram","doi":"10.3934/krm.2023020","DOIUrl":null,"url":null,"abstract":"In this paper we study the long-time behaviour of a kinetic formulation of an Elo-type rating model for a large number of interacting players with variable strength. The model results in a non-linear mean-field Fokker-Planck equation and we show the existence of steady states via a Schauder fixed point argument. Our proof relies on the study of a related linear equation using hypocoercivity techniques.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"58 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2023020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the long-time behaviour of a kinetic formulation of an Elo-type rating model for a large number of interacting players with variable strength. The model results in a non-linear mean-field Fokker-Planck equation and we show the existence of steady states via a Schauder fixed point argument. Our proof relies on the study of a related linear equation using hypocoercivity techniques.
对于不同强度的玩家,elo型评级模型的稳定状态
在本文中,我们研究了具有可变强度的大量相互作用参与者的elo型评级模型的动力学公式的长期行为。该模型得到一个非线性平均场Fokker-Planck方程,并通过Schauder不动点论证证明了稳态的存在性。我们的证明依赖于使用低矫顽力技术研究一个相关的线性方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信