{"title":"Performance Improvement of Ballistic Double-Gate Devices and Design Trade-Offs","authors":"R. Gusmeroli, A. Spinelli","doi":"10.1109/ESIME.2006.1643986","DOIUrl":null,"url":null,"abstract":"We performed 2D quantum-mechanical simulations of double-gate devices with drift-diffusion and ballistic transport models, investigating the performance improvement that may derive from a scattering-free transport. Device performance and trade-offs are analyzed for channel length from 30 to 8 nm","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"6 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"微纳电子与智能制造","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ESIME.2006.1643986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We performed 2D quantum-mechanical simulations of double-gate devices with drift-diffusion and ballistic transport models, investigating the performance improvement that may derive from a scattering-free transport. Device performance and trade-offs are analyzed for channel length from 30 to 8 nm