RANDM: Random Access Depth Map Compression Using Range-Partitioning and Global Dictionary

Srihari Pratapa, Dinesh Manocha
{"title":"RANDM: Random Access Depth Map Compression Using Range-Partitioning and Global Dictionary","authors":"Srihari Pratapa, Dinesh Manocha","doi":"10.1145/3384382.3384524","DOIUrl":null,"url":null,"abstract":"We present a novel random-access depth map compression algorithm (RANDM) for interactive rendering. Our compressed representation provides random access to the depth values and enables real-time parallel decompression on commodity hardware. Our method partitions the depth range captured in a given scene into equal-sized intervals and uses this partition to generate three separate components that exhibit higher coherence. Each of these components is processed independently to generate the compressed stream. Our decompression algorithm is simple and performs prefix-sum computations while also decoding the entropy compressed blocks. We have evaluated the performance on large databases on depth maps and obtain a compression ratio of 20 − 100 × with a root-means-square (RMS) error of 0.05 − 2 in the disparity values of the depth map. The decompression algorithm is fast and takes about 1 microsecond per block on a single thread on an Intel Xeon CPU. To the best of our knowledge, RANDM is the first depth map compression algorithm that provides random access capability for interactive applications.","PeriodicalId":91160,"journal":{"name":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384382.3384524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a novel random-access depth map compression algorithm (RANDM) for interactive rendering. Our compressed representation provides random access to the depth values and enables real-time parallel decompression on commodity hardware. Our method partitions the depth range captured in a given scene into equal-sized intervals and uses this partition to generate three separate components that exhibit higher coherence. Each of these components is processed independently to generate the compressed stream. Our decompression algorithm is simple and performs prefix-sum computations while also decoding the entropy compressed blocks. We have evaluated the performance on large databases on depth maps and obtain a compression ratio of 20 − 100 × with a root-means-square (RMS) error of 0.05 − 2 in the disparity values of the depth map. The decompression algorithm is fast and takes about 1 microsecond per block on a single thread on an Intel Xeon CPU. To the best of our knowledge, RANDM is the first depth map compression algorithm that provides random access capability for interactive applications.
随机访问深度图压缩使用范围分区和全局字典
提出了一种新的随机访问深度图压缩算法(RANDM)。我们的压缩表示提供了对深度值的随机访问,并支持在商用硬件上进行实时并行解压缩。我们的方法将在给定场景中捕获的深度范围划分为相等大小的间隔,并使用该分区生成三个具有更高相干性的独立组件。这些组件中的每一个都被独立处理以生成压缩流。我们的解压缩算法简单,在解码熵压缩块的同时进行前缀和计算。我们评估了深度图在大型数据库上的性能,并获得了20 - 100 ×的压缩比,深度图的视差值的均方根误差为0.05 - 2。解压缩算法很快,在Intel Xeon CPU上的单个线程上每个块大约需要1微秒。据我们所知,RANDM是第一个为交互式应用程序提供随机访问能力的深度图压缩算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信