{"title":"General path integrals and stable SDEs","authors":"S. Baguley, L. Doering, A. Kyprianou","doi":"10.4171/jems/1331","DOIUrl":null,"url":null,"abstract":"The theory of one-dimensional stochastic differential equations driven by Brownian motion is classical and has been largely understood for several decades. For stochastic differential equations with jumps the picture is still incomplete, and even some of the most basic questions are only partially understood. In the present article we study existence and uniqueness of weak solutions to \\[ \n{\\rm d}Z_t=\\sigma(Z_{t-}){\\rm d} X_t \n\\]driven by a (symmetric) $\\alpha$-stable Levy process, in the spirit of the classical Engelbert-Schmidt time-change approach. Extending and completing results of Zanzotto we derive a complete characterisation for existence und uniqueness of weak solutions for $\\alpha\\in(0,1)$. Our approach is not based on classical stochastic calculus arguments but on the general theory of Markov processes. We proof integral tests for finiteness of path integrals under minimal assumptions.","PeriodicalId":50003,"journal":{"name":"Journal of the European Mathematical Society","volume":"143 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1331","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
The theory of one-dimensional stochastic differential equations driven by Brownian motion is classical and has been largely understood for several decades. For stochastic differential equations with jumps the picture is still incomplete, and even some of the most basic questions are only partially understood. In the present article we study existence and uniqueness of weak solutions to \[
{\rm d}Z_t=\sigma(Z_{t-}){\rm d} X_t
\]driven by a (symmetric) $\alpha$-stable Levy process, in the spirit of the classical Engelbert-Schmidt time-change approach. Extending and completing results of Zanzotto we derive a complete characterisation for existence und uniqueness of weak solutions for $\alpha\in(0,1)$. Our approach is not based on classical stochastic calculus arguments but on the general theory of Markov processes. We proof integral tests for finiteness of path integrals under minimal assumptions.
期刊介绍:
The Journal of the European Mathematical Society (JEMS) is the official journal of the EMS.
The Society, founded in 1990, works at promoting joint scientific efforts between the many different structures that characterize European mathematics. JEMS will publish research articles in all active areas of pure and applied mathematics. These will be selected by a distinguished, international board of editors for their outstanding quality and interest, according to the highest international standards.
Occasionally, substantial survey papers on topics of exceptional interest will also be published. Starting in 1999, the Journal was published by Springer-Verlag until the end of 2003. Since 2004 it is published by the EMS Publishing House. The first Editor-in-Chief of the Journal was J. Jost, succeeded by H. Brezis in 2004.
The Journal of the European Mathematical Society is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.