{"title":"Design of Microstrip Parallel-Coupled Lines with High Directivity using Symmetric-Centered Inductors","authors":"Somchat Sonasang, N. Angkawisittpan","doi":"10.47037/2020.aces.j.360606","DOIUrl":null,"url":null,"abstract":"A technique for directivity improvement of the microstrip parallel-coupled lines using symmetric-centered inductors is presented in this paper. The design procedure of the symmetric-centered inductors using the closed-form equations is given. The proposed technique was performed with a design at the operating frequency of 0.9 GHz on an FR4 substrate. Validity of the proposed technique is verified by simulations and measurements in comparisons with conventional parallel-coupled lines. The measured results exhibit the isolation of -30.10 dB and directivity of 19.28 dB at the operating frequency of 0.9 GHz. The directivity from the measured results is improved by more than 4 dB at 0.9 GHz and more than 6 dB at 1.05 GHz compared with the conventional parallel-coupled lines. In addition, the proposed technique for the microstrip parallel-coupled line can achieve a high directivity with the compact size (21.0 mm x 4.70 mm). The novelty of this paper is by introducing the proposed and closed-form design equations for the compact symmetric-centered inductors with high directivity.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"115 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2020.aces.j.360606","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5
Abstract
A technique for directivity improvement of the microstrip parallel-coupled lines using symmetric-centered inductors is presented in this paper. The design procedure of the symmetric-centered inductors using the closed-form equations is given. The proposed technique was performed with a design at the operating frequency of 0.9 GHz on an FR4 substrate. Validity of the proposed technique is verified by simulations and measurements in comparisons with conventional parallel-coupled lines. The measured results exhibit the isolation of -30.10 dB and directivity of 19.28 dB at the operating frequency of 0.9 GHz. The directivity from the measured results is improved by more than 4 dB at 0.9 GHz and more than 6 dB at 1.05 GHz compared with the conventional parallel-coupled lines. In addition, the proposed technique for the microstrip parallel-coupled line can achieve a high directivity with the compact size (21.0 mm x 4.70 mm). The novelty of this paper is by introducing the proposed and closed-form design equations for the compact symmetric-centered inductors with high directivity.
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.