Ultrafast Euclidean Shortest Path Computation Using Hub Labeling

Jinchun Du, Bojie Shen, M. A. Cheema
{"title":"Ultrafast Euclidean Shortest Path Computation Using Hub Labeling","authors":"Jinchun Du, Bojie Shen, M. A. Cheema","doi":"10.1609/aaai.v37i10.26463","DOIUrl":null,"url":null,"abstract":"Finding shortest paths in a Euclidean plane containing polygonal obstacles is a well-studied problem motivated by a variety of real-world applications. \nThe state-of-the-art algorithms require finding obstacle corners visible to the source and target, and need to consider potentially a large number of candidate paths. This adversely affects their query processing cost. We address these limitations by proposing a novel adaptation of hub labeling which is the state-of-the-art approach for shortest distance computation in road networks. Our experimental study conducted on the widely used benchmark maps shows that our approach is typically 1-2 orders of magnitude faster than two state-of-the-art algorithms.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"113 1","pages":"12417-12426"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i10.26463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Finding shortest paths in a Euclidean plane containing polygonal obstacles is a well-studied problem motivated by a variety of real-world applications. The state-of-the-art algorithms require finding obstacle corners visible to the source and target, and need to consider potentially a large number of candidate paths. This adversely affects their query processing cost. We address these limitations by proposing a novel adaptation of hub labeling which is the state-of-the-art approach for shortest distance computation in road networks. Our experimental study conducted on the widely used benchmark maps shows that our approach is typically 1-2 orders of magnitude faster than two state-of-the-art algorithms.
基于轮毂标记的超快速欧氏最短路径计算
在包含多边形障碍物的欧几里得平面上寻找最短路径是一个被广泛研究的问题,其动机是各种实际应用。最先进的算法需要找到源和目标可见的障碍角,并且需要考虑潜在的大量候选路径。这对它们的查询处理成本有不利影响。我们通过提出一种新的适应枢纽标签的方法来解决这些限制,这是最先进的道路网络中最短距离计算的方法。我们在广泛使用的基准地图上进行的实验研究表明,我们的方法通常比两种最先进的算法快1-2个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信