The Opportunity Count Model: A Flexible Approach to Modeling Student Performance

Yan Wang, Korinn S. Ostrow, Seth A. Adjei, N. Heffernan
{"title":"The Opportunity Count Model: A Flexible Approach to Modeling Student Performance","authors":"Yan Wang, Korinn S. Ostrow, Seth A. Adjei, N. Heffernan","doi":"10.1145/2876034.2893382","DOIUrl":null,"url":null,"abstract":"Detailed performance data can be exploited to achieve stronger student models when predicting next problem correctness (NPC) within intelligent tutoring systems. However, the availability and importance of these details may differ significantly when considering opportunity count (OC), or the compounded sequence of problems a student experiences within a skill. Inspired by this intuition, the present study introduces the Opportunity Count Model (OCM), a unique approach to student modeling in which separate models are built for differing OCs rather than creating a blanket model that encompasses all OCs. We use Random Forest (RF), which can be used to indicate feature importance, to construct the OCM by considering detailed performance data within tutor log files. Results suggest that OC is significant when modeling student performance and that detailed performance data varies across OCs.","PeriodicalId":20739,"journal":{"name":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2876034.2893382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Detailed performance data can be exploited to achieve stronger student models when predicting next problem correctness (NPC) within intelligent tutoring systems. However, the availability and importance of these details may differ significantly when considering opportunity count (OC), or the compounded sequence of problems a student experiences within a skill. Inspired by this intuition, the present study introduces the Opportunity Count Model (OCM), a unique approach to student modeling in which separate models are built for differing OCs rather than creating a blanket model that encompasses all OCs. We use Random Forest (RF), which can be used to indicate feature importance, to construct the OCM by considering detailed performance data within tutor log files. Results suggest that OC is significant when modeling student performance and that detailed performance data varies across OCs.
机会计数模型:一个灵活的方法来模拟学生的表现
在智能辅导系统中,在预测下一个问题的正确性(NPC)时,可以利用详细的表现数据来实现更强大的学生模型。然而,当考虑到机会数(OC)或学生在一项技能中遇到的问题的复合顺序时,这些细节的可用性和重要性可能会有很大的不同。受这种直觉的启发,本研究引入了机会计数模型(OCM),这是一种独特的学生建模方法,其中为不同的OCs构建单独的模型,而不是创建包含所有OCs的一揽子模型。我们使用随机森林(RF)来表示特征的重要性,通过考虑导师日志文件中的详细性能数据来构建OCM。结果表明,在对学生成绩进行建模时,OC是重要的,并且不同OC的详细表现数据各不相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信