Geometric Deep Neural Network using Rigid and Non-Rigid Transformations for Human Action Recognition

Rasha Friji, Hassen Drira, F. Chaieb, Hamza Kchok, S. Kurtek
{"title":"Geometric Deep Neural Network using Rigid and Non-Rigid Transformations for Human Action Recognition","authors":"Rasha Friji, Hassen Drira, F. Chaieb, Hamza Kchok, S. Kurtek","doi":"10.1109/ICCV48922.2021.01238","DOIUrl":null,"url":null,"abstract":"Deep Learning architectures, albeit successful in most computer vision tasks, were designed for data with an underlying Euclidean structure, which is not usually fulfilled since pre-processed data may lie on a non-linear space. In this paper, we propose a geometry aware deep learning approach using rigid and non rigid transformation optimization for skeleton-based action recognition. Skeleton sequences are first modeled as trajectories on Kendall’s shape space and then mapped to the linear tangent space. The resulting structured data are then fed to a deep learning architecture, which includes a layer that optimizes over rigid and non rigid transformations of the 3D skeletons, followed by a CNN-LSTM network. The assessment on two large scale skeleton datasets, namely NTU-RGB+D and NTU-RGB+D 120, has proven that the proposed approach outperforms existing geometric deep learning methods and exceeds recently published approaches with respect to the majority of configurations.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"20 1","pages":"12591-12600"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Deep Learning architectures, albeit successful in most computer vision tasks, were designed for data with an underlying Euclidean structure, which is not usually fulfilled since pre-processed data may lie on a non-linear space. In this paper, we propose a geometry aware deep learning approach using rigid and non rigid transformation optimization for skeleton-based action recognition. Skeleton sequences are first modeled as trajectories on Kendall’s shape space and then mapped to the linear tangent space. The resulting structured data are then fed to a deep learning architecture, which includes a layer that optimizes over rigid and non rigid transformations of the 3D skeletons, followed by a CNN-LSTM network. The assessment on two large scale skeleton datasets, namely NTU-RGB+D and NTU-RGB+D 120, has proven that the proposed approach outperforms existing geometric deep learning methods and exceeds recently published approaches with respect to the majority of configurations.
基于刚性和非刚性变换的几何深度神经网络用于人体动作识别
尽管深度学习架构在大多数计算机视觉任务中取得了成功,但它是为具有底层欧几里德结构的数据而设计的,由于预处理数据可能位于非线性空间,因此通常无法实现。在本文中,我们提出了一种基于骨架的动作识别的几何感知深度学习方法,该方法使用刚性和非刚性转换优化。骨架序列首先建模为肯德尔形状空间上的轨迹,然后映射到线性切线空间。然后将得到的结构化数据馈送到深度学习架构中,该架构包括一个优化3D骨架的刚性和非刚性转换的层,然后是CNN-LSTM网络。对NTU-RGB+D和NTU-RGB+D 120两个大型骨架数据集的评估证明,所提出的方法优于现有的几何深度学习方法,并且在大多数配置方面超过了最近发表的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信