Data access visualization for legacy application maintenance

Keisuke Yano, Akihiko Matsuo
{"title":"Data access visualization for legacy application maintenance","authors":"Keisuke Yano, Akihiko Matsuo","doi":"10.1109/SANER.2017.7884671","DOIUrl":null,"url":null,"abstract":"Software clustering techniques have been studied and applied to analyze and visualize the actual structure of legacy applications, which have used program information, e.g., dependencies, as input. However, business data also play an important role in a business system. Revealing which programs actually use data in the current system can give us a key insight when analyzing a long-lived complicated system. In this paper, we calculate indexes indicating how a data entity is used, making use of software clustering, which can be used to detect problematic or characteristic parts of the system. The developed technique can reveal the characteristics of a data entity; i.e., it is used like master data. We applied this technique to two business systems used for many years and found that our technique can help us understand the systems in terms of business data usage. Through case studies, we evaluated the validity of the indexes and showed that software visualization with the indexes can be used to investigate a system in an exploratory way.","PeriodicalId":6541,"journal":{"name":"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"63 1","pages":"546-550"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2017.7884671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Software clustering techniques have been studied and applied to analyze and visualize the actual structure of legacy applications, which have used program information, e.g., dependencies, as input. However, business data also play an important role in a business system. Revealing which programs actually use data in the current system can give us a key insight when analyzing a long-lived complicated system. In this paper, we calculate indexes indicating how a data entity is used, making use of software clustering, which can be used to detect problematic or characteristic parts of the system. The developed technique can reveal the characteristics of a data entity; i.e., it is used like master data. We applied this technique to two business systems used for many years and found that our technique can help us understand the systems in terms of business data usage. Through case studies, we evaluated the validity of the indexes and showed that software visualization with the indexes can be used to investigate a system in an exploratory way.
用于维护遗留应用程序的数据访问可视化
软件集群技术已经被研究并应用于分析和可视化遗留应用程序的实际结构,这些应用程序使用程序信息,例如,依赖关系作为输入。然而,业务数据在业务系统中也扮演着重要的角色。在分析一个长期存在的复杂系统时,揭示哪些程序实际上使用了当前系统中的数据可以为我们提供关键的见解。在本文中,我们计算了指示如何使用数据实体的索引,利用软件聚类,可用于检测系统的问题部分或特征部分。所开发的技术可以揭示数据实体的特征;也就是说,它像主数据一样被使用。我们将此技术应用于两个使用多年的业务系统,发现我们的技术可以帮助我们从业务数据使用的角度理解系统。通过案例分析,我们对指标的有效性进行了评价,并表明利用这些指标的软件可视化可以对系统进行探索性的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信