On the Cardinality of Layers in Some Partially Ordered Sets

IF 0.1 Q4 MATHEMATICS, APPLIED
T. Andreeva, Y. Semenov
{"title":"On the Cardinality of Layers in Some Partially Ordered Sets","authors":"T. Andreeva, Y. Semenov","doi":"10.26907/2541-7746.2020.3.269-284","DOIUrl":null,"url":null,"abstract":"In this paper, we explicitly calculated additional terms of cardinality asymptotics of layers in the n -dimensional k -valued lattice E nk for odd k as n → ∞. The main term had been previously determined by V.B. Alekseev for a class of posets and, particularly, for E n . Additionally, we precised the cardinality asymtotics of central layers in Cartesian powers of the non-graded poset given by V.B. Alekseev in the same work and calculated the sums of boundary functionals for the n -dimensional three-valued lattice. The obtained theorems, lemmas, and formulas are of combinatorial interest by themselves. They can also be used for estimating the cardinality of maximal antichain or the number of antichains in posets of a definite class.","PeriodicalId":41863,"journal":{"name":"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki","volume":"5 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/2541-7746.2020.3.269-284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we explicitly calculated additional terms of cardinality asymptotics of layers in the n -dimensional k -valued lattice E nk for odd k as n → ∞. The main term had been previously determined by V.B. Alekseev for a class of posets and, particularly, for E n . Additionally, we precised the cardinality asymtotics of central layers in Cartesian powers of the non-graded poset given by V.B. Alekseev in the same work and calculated the sums of boundary functionals for the n -dimensional three-valued lattice. The obtained theorems, lemmas, and formulas are of combinatorial interest by themselves. They can also be used for estimating the cardinality of maximal antichain or the number of antichains in posets of a definite class.
关于部分有序集合中层的基数性
本文明确地计算了n维k值格E k中奇数k为n→∞时各层的基数渐近的附加项。主要项以前是由V.B.阿列克谢耶夫(V.B. Alekseev)确定的,用于一类偏序集,特别是en。此外,我们还精确地给出了V.B. Alekseev在同一工作中给出的非分级偏序集的笛卡尔幂的中心层的基数渐近性,并计算了n维三值格的边界泛函和。所得的定理、引理和公式本身具有组合的意义。它们也可用于估计一个确定类的偏置集的最大反链的基数或反链的个数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信