Edge-fault-tolerant pancyclicity of 2-tree-generated networks

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Mohamad Abdallah
{"title":"Edge-fault-tolerant pancyclicity of 2-tree-generated networks","authors":"Mohamad Abdallah","doi":"10.1080/23799927.2019.1694997","DOIUrl":null,"url":null,"abstract":"ABSTRACT Jwo et al. introduced the alternating group graph as an interconnection network topology for computing systems. A graph is pancyclic if it contains cycles of all possible lengths. P-Y Tsai et al. showed that the alternating group graph is pancyclic, and remains pancyclic after the deletion of 2n−6 edges. In this paper we consider a class of Cayley graphs introduced by Cheng et al. that are generated by certain 3-cycles on the alternating group . These graphs are generalizations of the alternating group graph . We look at the case when the 3-cycles form a ‘tree-like structure’, and analyse the pancyclicity of these graphs. We prove that this family of Cayley graphs is -edge-fault-tolerant pancyclic.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2019.1694997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Jwo et al. introduced the alternating group graph as an interconnection network topology for computing systems. A graph is pancyclic if it contains cycles of all possible lengths. P-Y Tsai et al. showed that the alternating group graph is pancyclic, and remains pancyclic after the deletion of 2n−6 edges. In this paper we consider a class of Cayley graphs introduced by Cheng et al. that are generated by certain 3-cycles on the alternating group . These graphs are generalizations of the alternating group graph . We look at the case when the 3-cycles form a ‘tree-like structure’, and analyse the pancyclicity of these graphs. We prove that this family of Cayley graphs is -edge-fault-tolerant pancyclic.
二树生成网络的边容错泛环性
Jwo等人介绍了交替组图作为计算系统互连网络拓扑。如果一个图包含了所有可能长度的环,那么它就是环。P-Y Tsai等证明了交替群图是泛环的,并且在删除2n−6条边后仍然是泛环的。本文考虑由Cheng等人引入的一类Cayley图,该类图是由交替群上的某些3环生成的。这些图是交替群图的推广。我们看看当3个环形成一个“树状结构”的情况,并分析这些图的泛环性。证明了这组Cayley图是-边容错全环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信