N2O concentration and flux measurements and complete isotopic analysis by FTIR spectroscopy

M.B. Esler , D.W.T. Griffith , F. Turatti , S.R. Wilson , T. Rahn , H. Zhang
{"title":"N2O concentration and flux measurements and complete isotopic analysis by FTIR spectroscopy","authors":"M.B. Esler ,&nbsp;D.W.T. Griffith ,&nbsp;F. Turatti ,&nbsp;S.R. Wilson ,&nbsp;T. Rahn ,&nbsp;H. Zhang","doi":"10.1016/S1465-9972(00)00033-7","DOIUrl":null,"url":null,"abstract":"<div><p>We report the development and application of analytical techniques for atmospheric N<sub>2</sub>O based on Fourier transform infrared (FTIR) spectroscopy. Using mobile low resolution (1 cm<sup>−1</sup>) FTIR spectroscopy in the field, the technique delivers mixing ratio measurements of precision ±0.3 ppbv (0.3 nmol mol<sup>−1</sup>) N<sub>2</sub>O and in situ soil–atmosphere flux chamber measurements of fluxes less than 1 ngN m<sup>−2</sup> s<sup>−1</sup> (0.04 nmol N<sub>2</sub>O m<sup>−2</sup> s<sup>−1</sup>) with a time resolution of 30 min. The method offers the additional advantages of being simultaneously able to measure CO<sub>2</sub>, CH<sub>4</sub> and CO mixing ratios in air to high precision (±0.15 μmol mol<sup>−1</sup>, ±1 nmol mol<sup>−1</sup>, ±0.3 nmol mol<sup>−1</sup>, respectively). By a similar analysis procedure, but with laboratory-based high resolution (0.012 cm<sup>−1</sup>) FTIR spectroscopy, the N<sub>2</sub>O isotope ratios δ<sup>15</sup>N, δ<sup>18</sup>O and δ<sup>17</sup>O are determined simultaneously for a single sample, with current precision of <span><math><mtext>±1.0‰,</mtext><mspace></mspace><mtext>±2.5‰</mtext></math></span> and <span><math><mtext>±4.4‰</mtext></math></span>, respectively. FTIR also resolves the individual contributions of the <sup>15</sup>N<sup>14</sup>N<sup>16</sup>O and <sup>14</sup>N<sup>15</sup>N<sup>16</sup>O to overall δ<sup>15</sup>N. The resolution of these two isotopomers is not possible using conventional isotope ratio mass spectrometry (IRMS). We present laboratory results demonstrating precision, and N-positionally resolved δ<sup>15</sup>N and δ<sup>18</sup>O measurements of UV-photolysed N<sub>2</sub>O in which a distinct asymmetric <sup>15</sup>N positional effect is observed.</p></div>","PeriodicalId":100235,"journal":{"name":"Chemosphere - Global Change Science","volume":"2 3","pages":"Pages 445-454"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1465-9972(00)00033-7","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere - Global Change Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1465997200000337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

We report the development and application of analytical techniques for atmospheric N2O based on Fourier transform infrared (FTIR) spectroscopy. Using mobile low resolution (1 cm−1) FTIR spectroscopy in the field, the technique delivers mixing ratio measurements of precision ±0.3 ppbv (0.3 nmol mol−1) N2O and in situ soil–atmosphere flux chamber measurements of fluxes less than 1 ngN m−2 s−1 (0.04 nmol N2O m−2 s−1) with a time resolution of 30 min. The method offers the additional advantages of being simultaneously able to measure CO2, CH4 and CO mixing ratios in air to high precision (±0.15 μmol mol−1, ±1 nmol mol−1, ±0.3 nmol mol−1, respectively). By a similar analysis procedure, but with laboratory-based high resolution (0.012 cm−1) FTIR spectroscopy, the N2O isotope ratios δ15N, δ18O and δ17O are determined simultaneously for a single sample, with current precision of ±1.0‰,±2.5‰ and ±4.4‰, respectively. FTIR also resolves the individual contributions of the 15N14N16O and 14N15N16O to overall δ15N. The resolution of these two isotopomers is not possible using conventional isotope ratio mass spectrometry (IRMS). We present laboratory results demonstrating precision, and N-positionally resolved δ15N and δ18O measurements of UV-photolysed N2O in which a distinct asymmetric 15N positional effect is observed.

N2O浓度和通量测量和完成同位素分析的FTIR光谱
本文报道了基于傅里叶变换红外(FTIR)光谱的大气N2O分析技术的发展及其应用。使用移动低分辨率(1厘米−1)红外光谱,这项技术提供混合比的测量精度±0.3 ppbv (0.3 nmol摩尔−1)原位一氧化二氮和土壤空气通量室测量通量小于1 ngN m 2 s−−1 (0.04 nmol一氧化二氮m 2 s−−1)30分钟的时间分辨率的方法。提供了额外的优势的同时能够测量二氧化碳,甲烷和一氧化碳混合比率在空气中精度高(±0.15μ摩尔摩尔−1,±1纳摩摩尔−1,±0.3 nmol摩尔−1分别)。通过类似的分析程序,但采用实验室高分辨率(0.012 cm−1)FTIR光谱,同时测定了单个样品的N2O同位素比值δ15N, δ18O和δ17O,目前精度分别为±1.0‰,±2.5‰和±4.4‰。FTIR还分析了15N14N16O和14N15N16O对总δ15N的单独贡献。传统的同位素比质谱法(IRMS)无法分辨这两种同位素。我们提供的实验室结果表明,紫外光解N2O的δ15N和δ18O测量精度和n位置分辨,其中观察到明显的不对称15N位置效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信