Facile Prediction of Neutrophil Activation State from Microscopy Images: A New Dataset and Comparative Deep Learning Approaches

Wei-Duen Liao, Ching-Yun Ko, Tsui-Wei Weng, Lucani E. Daniel, J. Voldman
{"title":"Facile Prediction of Neutrophil Activation State from Microscopy Images: A New Dataset and Comparative Deep Learning Approaches","authors":"Wei-Duen Liao, Ching-Yun Ko, Tsui-Wei Weng, Lucani E. Daniel, J. Voldman","doi":"10.1109/ISBI52829.2022.9761554","DOIUrl":null,"url":null,"abstract":"The immune system protects its host from infection. Dysfunction of the immune system can cause autoimmune diseases and inflammatory diseases. Monitoring the immune system provides crucial information in informing treatment strategies and assessing the effect of therapies. While measures such as complete blood count to determine the leukocyte subsets are extensively used clinically, our ability to assess leukocyte function is limited, especially for the cells of the innate immune system, such as neutrophils. Here we introduce the idea of assessing neutrophil function from simple-to-obtain phase microscopy images. We developed an experimental pipeline using measurement of reactive oxygen species generation as a label of neutrophil function. We generated a large neutrophil imaging dataset and explored different deep learning approaches to predict neutrophil activation state. Our work demonstrates the potential of using deep learning models to evaluate functional aspects of the immune system, which could provide significant insight into immune disease prognostic monitoring that can be easily adapted to clinical settings.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"79 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The immune system protects its host from infection. Dysfunction of the immune system can cause autoimmune diseases and inflammatory diseases. Monitoring the immune system provides crucial information in informing treatment strategies and assessing the effect of therapies. While measures such as complete blood count to determine the leukocyte subsets are extensively used clinically, our ability to assess leukocyte function is limited, especially for the cells of the innate immune system, such as neutrophils. Here we introduce the idea of assessing neutrophil function from simple-to-obtain phase microscopy images. We developed an experimental pipeline using measurement of reactive oxygen species generation as a label of neutrophil function. We generated a large neutrophil imaging dataset and explored different deep learning approaches to predict neutrophil activation state. Our work demonstrates the potential of using deep learning models to evaluate functional aspects of the immune system, which could provide significant insight into immune disease prognostic monitoring that can be easily adapted to clinical settings.
从显微镜图像中简单预测中性粒细胞激活状态:一个新的数据集和比较深度学习方法
免疫系统保护宿主免受感染。免疫系统功能障碍可引起自身免疫性疾病和炎症性疾病。监测免疫系统为告知治疗策略和评估治疗效果提供了重要信息。虽然临床广泛使用全血细胞计数等方法来确定白细胞亚群,但我们评估白细胞功能的能力有限,特别是对先天免疫系统的细胞,如中性粒细胞。在这里,我们介绍了评估中性粒细胞功能的想法,从简单获得相显微镜图像。我们开发了一个实验管道,使用测量活性氧的产生作为中性粒细胞功能的标签。我们生成了一个大型的中性粒细胞成像数据集,并探索了不同的深度学习方法来预测中性粒细胞的激活状态。我们的工作证明了使用深度学习模型来评估免疫系统功能方面的潜力,这可以为免疫疾病预后监测提供重要的见解,可以很容易地适应临床环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信