Learning Fine-Grained Visual Understanding for Video Question Answering via Decoupling Spatial-Temporal Modeling

Hsin-Ying Lee, Hung-Ting Su, Bing-Chen Tsai, Tsung-Han Wu, Jia-Fong Yeh, Winston H. Hsu
{"title":"Learning Fine-Grained Visual Understanding for Video Question Answering via Decoupling Spatial-Temporal Modeling","authors":"Hsin-Ying Lee, Hung-Ting Su, Bing-Chen Tsai, Tsung-Han Wu, Jia-Fong Yeh, Winston H. Hsu","doi":"10.48550/arXiv.2210.03941","DOIUrl":null,"url":null,"abstract":"While recent large-scale video-language pre-training made great progress in video question answering, the design of spatial modeling of video-language models is less fine-grained than that of image-language models; existing practices of temporal modeling also suffer from weak and noisy alignment between modalities. To learn fine-grained visual understanding, we decouple spatial-temporal modeling and propose a hybrid pipeline, Decoupled Spatial-Temporal Encoders, integrating an image- and a video-language encoder. The former encodes spatial semantics from larger but sparsely sampled frames independently of time, while the latter models temporal dynamics at lower spatial but higher temporal resolution. To help the video-language model learn temporal relations for video QA, we propose a novel pre-training objective, Temporal Referring Modeling, which requires the model to identify temporal positions of events in video sequences. Extensive experiments demonstrate that our model outperforms previous work pre-trained on orders of magnitude larger datasets.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"34 1","pages":"116"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.03941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While recent large-scale video-language pre-training made great progress in video question answering, the design of spatial modeling of video-language models is less fine-grained than that of image-language models; existing practices of temporal modeling also suffer from weak and noisy alignment between modalities. To learn fine-grained visual understanding, we decouple spatial-temporal modeling and propose a hybrid pipeline, Decoupled Spatial-Temporal Encoders, integrating an image- and a video-language encoder. The former encodes spatial semantics from larger but sparsely sampled frames independently of time, while the latter models temporal dynamics at lower spatial but higher temporal resolution. To help the video-language model learn temporal relations for video QA, we propose a novel pre-training objective, Temporal Referring Modeling, which requires the model to identify temporal positions of events in video sequences. Extensive experiments demonstrate that our model outperforms previous work pre-trained on orders of magnitude larger datasets.
通过解耦时空建模学习视频问答的细粒度视觉理解
虽然近年来大规模的视频语言预训练在视频问答方面取得了很大的进展,但视频语言模型的空间建模设计不如图像语言模型的精细;现有的时间建模方法也存在模态间的弱对齐和噪声对齐问题。为了学习细粒度的视觉理解,我们解耦时空建模并提出了一个混合管道,解耦时空编码器,集成了图像和视频语言编码器。前者从独立于时间的较大但稀疏采样的帧中编码空间语义,而后者以较低的空间但较高的时间分辨率模拟时间动态。为了帮助视频语言模型学习视频QA的时间关系,我们提出了一个新的预训练目标,即时间参考建模,该目标要求模型识别视频序列中事件的时间位置。大量的实验表明,我们的模型优于先前在数量级更大的数据集上预训练的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信