PeerLens

Meng Xia, Mingfei Sun, Huan Wei, Qing Chen, Yong Wang, Lei Shi, Huamin Qu, Xiaojuan Ma
{"title":"PeerLens","authors":"Meng Xia, Mingfei Sun, Huan Wei, Qing Chen, Yong Wang, Lei Shi, Huamin Qu, Xiaojuan Ma","doi":"10.1145/3290605.3300864","DOIUrl":null,"url":null,"abstract":"Online question pools like LeetCode provide hands-on exercises of skills and knowledge. However, due to the large volume of questions and the intent of hiding the tested knowledge behind them, many users find it hard to decide where to start or how to proceed based on their goals and performance. To overcome these limitations, we present PeerLens, an interactive visual analysis system that enables peer-inspired learning path planning. PeerLens can recommend a customized, adaptable sequence of practice questions to individual learners, based on the exercise history of other users in a similar learning scenario. We propose a new way to model the learning path by submission types and a novel visual design to facilitate the understanding and planning of the learning path. We conducted a within-subject experiment to assess the efficacy and usefulness of PeerLens in comparison with two baseline systems. Experiment results show that users are more confident in arranging their learning path via PeerLens and find it more informative and intuitive.","PeriodicalId":20454,"journal":{"name":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290605.3300864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Online question pools like LeetCode provide hands-on exercises of skills and knowledge. However, due to the large volume of questions and the intent of hiding the tested knowledge behind them, many users find it hard to decide where to start or how to proceed based on their goals and performance. To overcome these limitations, we present PeerLens, an interactive visual analysis system that enables peer-inspired learning path planning. PeerLens can recommend a customized, adaptable sequence of practice questions to individual learners, based on the exercise history of other users in a similar learning scenario. We propose a new way to model the learning path by submission types and a novel visual design to facilitate the understanding and planning of the learning path. We conducted a within-subject experiment to assess the efficacy and usefulness of PeerLens in comparison with two baseline systems. Experiment results show that users are more confident in arranging their learning path via PeerLens and find it more informative and intuitive.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信