Zubair Adil Soomro, Abu Ubaidah BIN SHAMSUDIN, R. Abdul Rahim, Andi Adrianshah, Mohd Hazeli
{"title":"Non-Verbal Human-Robot Interaction Using Neural Network for The Application of Service Robot","authors":"Zubair Adil Soomro, Abu Ubaidah BIN SHAMSUDIN, R. Abdul Rahim, Andi Adrianshah, Mohd Hazeli","doi":"10.31436/iiumej.v24i1.2577","DOIUrl":null,"url":null,"abstract":"Service robots are prevailing in many industries to assist humans in conducting repetitive tasks, which require a natural interaction called Human Robot Interaction (HRI). In particular, nonverbal HRI plays an important role in social interactions, which highlights the need to accurately detect the subject's attention by evaluating the programmed cues. In this paper, a conceptual attentiveness model algorithm called Attentive Recognition Model (ARM) is proposed to recognize a person’s attentiveness, which improves the accuracy of detection and subjective experience during nonverbal HRI using three combined detection models: face tracking, iris tracking and eye blinking. The face tracking model was trained using a Long Short-Term Memory (LSTM) neural network, which is based on deep learning. Meanwhile, the iris tracking and eye blinking use a mathematical model. The eye blinking model uses a random face landmark point to calculate the Eye Aspect Ratio (EAR), which is much more reliable compared to the prior method, which could detect a person blinking at a further distance even if the person was not blinking. The conducted experiments for face and iris tracking were able to detect direction up to 2 meters. Meanwhile, the tested eye blinking model gave an accuracy of 83.33% at up to 2 meters. The overall attentive accuracy of ARM was up to 85.7%. The experiments showed that the service robot was able to understand the programmed cues and hence perform certain tasks, such as approaching the interested person.\nABSTRAK: Robot perkhidmatan lazim dalam banyak industri untuk membantu manusia menjalankan tugas berulang, yang memerlukan interaksi semula jadi yang dipanggil Interaksi Robot Manusia (HRI). Khususnya, HRI bukan lisan memainkan peranan penting dalam interaksi sosial, yang menonjolkan keperluan untuk mengesan perhatian subjek dengan tepat dengan menilai isyarat yang diprogramkan. Dalam makalah ini, algoritma model perhatian konseptual yang dipanggil Model Pengecaman Perhatian (ARM) dicadangkan untuk mengenali perhatian seseorang, yang meningkatkan ketepatan pengesanan dan pengalaman subjektif semasa HRI bukan lisan menggunakan tiga model pengesanan gabungan: pengesanan muka, pengesanan iris dan mata berkedip. . Model penjejakan muka telah dilatih menggunakan rangkaian saraf Memori Jangka Pendek Panjang (LSTM), yang berdasarkan pembelajaran mendalam. Manakala, pengesanan iris dan mata berkelip menggunakan model matematik. Model mata berkelip menggunakan titik mercu tanda muka rawak untuk mengira Nisbah Aspek Mata (EAR), yang jauh lebih dipercayai berbanding kaedah sebelumnya, yang boleh mengesan seseorang berkelip pada jarak yang lebih jauh walaupun orang itu tidak berkelip. Eksperimen yang dijalankan untuk pengesanan muka dan iris dapat mengesan arah sehingga 2 meter. Sementara itu, model berkelip mata yang diuji memberikan ketepatan 83.33% sehingga 2 meter. Ketepatan perhatian keseluruhan ARM adalah sehingga 85.7%. Eksperimen menunjukkan bahawa robot perkhidmatan dapat memahami isyarat yang diprogramkan dan seterusnya melaksanakan tugas tertentu, seperti mendekati orang yang berminat.","PeriodicalId":13439,"journal":{"name":"IIUM Engineering Journal","volume":"51 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIUM Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31436/iiumej.v24i1.2577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Service robots are prevailing in many industries to assist humans in conducting repetitive tasks, which require a natural interaction called Human Robot Interaction (HRI). In particular, nonverbal HRI plays an important role in social interactions, which highlights the need to accurately detect the subject's attention by evaluating the programmed cues. In this paper, a conceptual attentiveness model algorithm called Attentive Recognition Model (ARM) is proposed to recognize a person’s attentiveness, which improves the accuracy of detection and subjective experience during nonverbal HRI using three combined detection models: face tracking, iris tracking and eye blinking. The face tracking model was trained using a Long Short-Term Memory (LSTM) neural network, which is based on deep learning. Meanwhile, the iris tracking and eye blinking use a mathematical model. The eye blinking model uses a random face landmark point to calculate the Eye Aspect Ratio (EAR), which is much more reliable compared to the prior method, which could detect a person blinking at a further distance even if the person was not blinking. The conducted experiments for face and iris tracking were able to detect direction up to 2 meters. Meanwhile, the tested eye blinking model gave an accuracy of 83.33% at up to 2 meters. The overall attentive accuracy of ARM was up to 85.7%. The experiments showed that the service robot was able to understand the programmed cues and hence perform certain tasks, such as approaching the interested person.
ABSTRAK: Robot perkhidmatan lazim dalam banyak industri untuk membantu manusia menjalankan tugas berulang, yang memerlukan interaksi semula jadi yang dipanggil Interaksi Robot Manusia (HRI). Khususnya, HRI bukan lisan memainkan peranan penting dalam interaksi sosial, yang menonjolkan keperluan untuk mengesan perhatian subjek dengan tepat dengan menilai isyarat yang diprogramkan. Dalam makalah ini, algoritma model perhatian konseptual yang dipanggil Model Pengecaman Perhatian (ARM) dicadangkan untuk mengenali perhatian seseorang, yang meningkatkan ketepatan pengesanan dan pengalaman subjektif semasa HRI bukan lisan menggunakan tiga model pengesanan gabungan: pengesanan muka, pengesanan iris dan mata berkedip. . Model penjejakan muka telah dilatih menggunakan rangkaian saraf Memori Jangka Pendek Panjang (LSTM), yang berdasarkan pembelajaran mendalam. Manakala, pengesanan iris dan mata berkelip menggunakan model matematik. Model mata berkelip menggunakan titik mercu tanda muka rawak untuk mengira Nisbah Aspek Mata (EAR), yang jauh lebih dipercayai berbanding kaedah sebelumnya, yang boleh mengesan seseorang berkelip pada jarak yang lebih jauh walaupun orang itu tidak berkelip. Eksperimen yang dijalankan untuk pengesanan muka dan iris dapat mengesan arah sehingga 2 meter. Sementara itu, model berkelip mata yang diuji memberikan ketepatan 83.33% sehingga 2 meter. Ketepatan perhatian keseluruhan ARM adalah sehingga 85.7%. Eksperimen menunjukkan bahawa robot perkhidmatan dapat memahami isyarat yang diprogramkan dan seterusnya melaksanakan tugas tertentu, seperti mendekati orang yang berminat.
服务机器人在许多行业中盛行,以帮助人类执行重复性任务,这需要一种称为人机交互(HRI)的自然交互。特别是,非语言人力资源调查在社会互动中扮演着重要的角色,它强调了通过评估编程线索来准确检测受试者注意力的必要性。本文提出了一种概念性注意力模型算法——注意力识别模型(attention Recognition model, ARM)来识别人的注意力,该算法采用面部跟踪、虹膜跟踪和眨眼三种检测模型相结合的方法,提高了非语言HRI检测的准确性和主观体验。人脸跟踪模型采用基于深度学习的长短期记忆(LSTM)神经网络训练。同时,虹膜跟踪和眨眼使用数学模型。该眨眼模型使用随机的人脸标记点来计算眼睛宽高比(EAR),相比于之前的方法,该方法可以在更远的距离检测到一个人在眨眼,即使这个人没有眨眼。所进行的面部和虹膜跟踪实验能够检测到2米以内的方向。同时,所测试的眨眼模型在2米范围内的准确率为83.33%。ARM的整体注意正确率高达85.7%。实验表明,服务机器人能够理解编程提示,从而执行某些任务,例如接近感兴趣的人。摘要:Robot perkhidmatan lazim dalam banyak industri untuk memuntu manusia menjalankan tugas berulang, yang memerlukan interaksi semula jadi yang dipanggil interaksi Robot manusia (HRI)。Khususnya, HRI bukan lisan memainkan peranan penting dalam interaksi social, yang menonjolan keperluan untuk mengesan peratian subject dengan tepat dengan menilai isyarat yang diprogramkan。Dalam makalah ini,算法模型penpenaman perhatian (ARM) dicadangkan untuk mengenali perhatian, yang meningkatkan ketepatan pengesanan dan pengalaman主题semasa, HRI bukan lisan menggunakan tiga模型penesanan gabungan: penesanan muka, penesanan iris dan mata berkep . .模型penjejakan muka telah dilatih menggunakan rangkaian saraf Memori janka Pendek Panjang (LSTM), yang berdasarkan penbelajan mendalam。马纳卡拉,彭格萨南鸢尾花,马格纳坎模型数学模型。模型mata berkelip menggunakan titik mercu tanda muka rawak untuk mengira Nisbah Aspek mata (EAR), yang jauh lebih dipercayai berbanding kaedah sebelumnya, yang boleh mengesan seseorang berkelip pada jarak yang lebih jauh walaupun orangi tidak berkelip。eksperen yang dijalankan untuk pengesanan muka daniris dapat mengesan arah sehinga 2米。Sementara itu,模特berkelip mata yang diuji成员kan ketepatan 83.33%,身高2米。Ketepatan perhatian keseluruhan ARM adalah sehinga 85.7%。机器人机器人perkhidmatan dapat memahami isyarat yang diprogramkan danterusnya melaksanakan tugas tertentu, perpertimenunjukkan bahava。
期刊介绍:
The IIUM Engineering Journal, published biannually (June and December), is a peer-reviewed open-access journal of the Faculty of Engineering, International Islamic University Malaysia (IIUM). The IIUM Engineering Journal publishes original research findings as regular papers, review papers (by invitation). The Journal provides a platform for Engineers, Researchers, Academicians, and Practitioners who are highly motivated in contributing to the Engineering disciplines, and Applied Sciences. It also welcomes contributions that address solutions to the specific challenges of the developing world, and address science and technology issues from an Islamic and multidisciplinary perspective. Subject areas suitable for publication are as follows: -Chemical and Biotechnology Engineering -Civil and Environmental Engineering -Computer Science and Information Technology -Electrical, Computer, and Communications Engineering -Engineering Mathematics and Applied Science -Materials and Manufacturing Engineering -Mechanical and Aerospace Engineering -Mechatronics and Automation Engineering