Level spacing and Poisson statistics for continuum random Schrödinger operators

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Adrian Dietlein, A. Elgart
{"title":"Level spacing and Poisson statistics for continuum random Schrödinger operators","authors":"Adrian Dietlein, A. Elgart","doi":"10.4171/jems/1033","DOIUrl":null,"url":null,"abstract":"For continuum alloy-type random Schrödinger operators with signdefinite single-site bump functions and absolutely continuous single-site randomness we prove a probabilistic level-spacing estimate at the bottom of the spectrum. More precisely, given a finite-volume restriction of the random operator onto a box of linear size L, we prove that with high probability the eigenvalues below some threshold energy Esp keep a distance of at least e −(logL) for sufficiently large β > 1. This implies simplicity of the spectrum of the infinite-volume operator below Esp. Under the additional assumption of Lipschitz-continuity of the single-site probability density we also prove a Minami-type estimate and Poisson statistics for the point process given by the unfolded eigenvalues around a reference energy E.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6

Abstract

For continuum alloy-type random Schrödinger operators with signdefinite single-site bump functions and absolutely continuous single-site randomness we prove a probabilistic level-spacing estimate at the bottom of the spectrum. More precisely, given a finite-volume restriction of the random operator onto a box of linear size L, we prove that with high probability the eigenvalues below some threshold energy Esp keep a distance of at least e −(logL) for sufficiently large β > 1. This implies simplicity of the spectrum of the infinite-volume operator below Esp. Under the additional assumption of Lipschitz-continuity of the single-site probability density we also prove a Minami-type estimate and Poisson statistics for the point process given by the unfolded eigenvalues around a reference energy E.
连续统随机Schrödinger算子的水平间距和泊松统计量
对于具有明显的单点碰撞函数和绝对连续的单点随机的连续合金型随机Schrödinger算子,我们证明了谱底的一个概率水平间隔估计。更准确地说,在给定线性大小为L的盒子上的随机算子的有限体积限制下,我们证明了对于足够大的β > 1,低于某个阈值能量Esp的特征值有高概率保持至少e−(logL)的距离。在单点概率密度的lipschitz -连续性的附加假设下,我们还证明了由围绕参考能量E展开的特征值给出的点过程的一个minami型估计和泊松统计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信