Hill-Type Formula and Krein-Type Trace Formula for Hamiltonian Systems

IF 0.4 Q4 MATHEMATICS
global sci
{"title":"Hill-Type Formula and Krein-Type Trace Formula for Hamiltonian Systems","authors":"global sci","doi":"10.4208/ATA.2021.PR80.09","DOIUrl":null,"url":null,"abstract":". In this paper, we give a survey on the Hill-type formula and its applications. Moreover, we generalize the Hill-type formula for linear Hamiltonian systems and Sturm-Liouville systems with any self-adjoint boundary conditions, which include the standard Neumann, Dirichlet and periodic boundary conditions. The Hill-type formula connects the infinite determinant of the Hessian of the action functional with the determinant of matrices which depend on the monodromy matrix and boundary conditions. Further, based on the Hill-type formula, we derive the Krein-type trace formula. As applications, we give nontrivial estimations for the eigenvalue problem and the relative Morse index.","PeriodicalId":29763,"journal":{"name":"Analysis in Theory and Applications","volume":"77 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis in Theory and Applications","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.4208/ATA.2021.PR80.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, we give a survey on the Hill-type formula and its applications. Moreover, we generalize the Hill-type formula for linear Hamiltonian systems and Sturm-Liouville systems with any self-adjoint boundary conditions, which include the standard Neumann, Dirichlet and periodic boundary conditions. The Hill-type formula connects the infinite determinant of the Hessian of the action functional with the determinant of matrices which depend on the monodromy matrix and boundary conditions. Further, based on the Hill-type formula, we derive the Krein-type trace formula. As applications, we give nontrivial estimations for the eigenvalue problem and the relative Morse index.
哈密顿系统的hill型公式和krein型示踪公式
. 本文综述了希尔式公式及其应用。此外,我们推广了具有任意自伴随边界条件的线性hamilton系统和Sturm-Liouville系统的hill型公式,这些边界条件包括标准Neumann、Dirichlet和周期边界条件。hill型公式将作用泛函的Hessian的无穷行列式与依赖于单矩阵和边界条件的矩阵的行列式联系起来。进一步,在hill型公式的基础上,导出了krein型轨迹公式。作为应用,我们给出了特征值问题和相对莫尔斯指数的非平凡估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
747
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信