N. Rattana, Rahul S Mulikb, Aakanksha J Kaushikc, Satish Kumar Sharmad
{"title":"Multi-objective optimization of TW-ECSM process parameters for machining of advanced non-conducting material","authors":"N. Rattana, Rahul S Mulikb, Aakanksha J Kaushikc, Satish Kumar Sharmad","doi":"10.56042/ijems.v29i1.45904","DOIUrl":null,"url":null,"abstract":"Travelling wire electrochemical spark machining (TW-ECSM) is newly evolved and developed hybrid machining process for the machining of advanced non-conducting materials which possess significant values of the properties like high strength, high wear and fatigue resistance, high refractoriness and high strength to weight ratio, etc. The control parameters like voltage, wire feed rate, electrolyte concentration and inter-electrode gap were selected as Input Parameters and Material Removal Rate (MRR), and Surface Roughness (SR) were the corresponding output responses. In present work, for multi-objective optimization and purpose of better control of machining parameters, three approaches, grey-relational analysis-principal component analysis (GRA-PCA), fuzzy logic and desirability function approach are used to determine the optimal combination of TW-ECSM process variables. Results of fuzzy logic and GRA-PCA approach are found comparable while desirability function approach is found to be capable of predicting the optimal responses at such levels of process variables also at which experiments are not performed. Consequences of the applied approach in the present work are also validated by conducting the confirmatory experiments and results are found in well agreement with the predicted results.","PeriodicalId":13464,"journal":{"name":"Indian Journal of Engineering and Materials Sciences","volume":"93 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Engineering and Materials Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.56042/ijems.v29i1.45904","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Travelling wire electrochemical spark machining (TW-ECSM) is newly evolved and developed hybrid machining process for the machining of advanced non-conducting materials which possess significant values of the properties like high strength, high wear and fatigue resistance, high refractoriness and high strength to weight ratio, etc. The control parameters like voltage, wire feed rate, electrolyte concentration and inter-electrode gap were selected as Input Parameters and Material Removal Rate (MRR), and Surface Roughness (SR) were the corresponding output responses. In present work, for multi-objective optimization and purpose of better control of machining parameters, three approaches, grey-relational analysis-principal component analysis (GRA-PCA), fuzzy logic and desirability function approach are used to determine the optimal combination of TW-ECSM process variables. Results of fuzzy logic and GRA-PCA approach are found comparable while desirability function approach is found to be capable of predicting the optimal responses at such levels of process variables also at which experiments are not performed. Consequences of the applied approach in the present work are also validated by conducting the confirmatory experiments and results are found in well agreement with the predicted results.