Learning Long-Term Situation Prediction for Automated Driving

S. Hörmann, Martin Bach, K. Dietmayer
{"title":"Learning Long-Term Situation Prediction for Automated Driving","authors":"S. Hörmann, Martin Bach, K. Dietmayer","doi":"10.1109/ICMLA.2017.00-21","DOIUrl":null,"url":null,"abstract":"A major challenge in autonomous driving is the prediction of complex downtown scenarios with mutiple road users. This contribution tackles this challenge by combining,,,,,,,, a Bayesian filtering technique for environment representation and machine learning as long-term predictor. Therefore, a dynamic occupancy grid map representing the static and dynamic environment around the ego-vehicle is utilized as input to a deep convolutional neural network. This yields the advantage of using data from a single timestamp for prediction, rather than an entire time series. Furthermore, convolutional neural networks have the inherent characteristic of using context information, enabling the implicit modeling of road user interaction. One of the major advantages is the unsupervised learning character due to fully automatic label generation. The presented algorithm is trained and evaluated on multiple hours of recorded sensor data containing multiple road users, e.g., pedestrians, bikes and vehicles.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"103 1","pages":"1000-1005"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A major challenge in autonomous driving is the prediction of complex downtown scenarios with mutiple road users. This contribution tackles this challenge by combining,,,,,,,, a Bayesian filtering technique for environment representation and machine learning as long-term predictor. Therefore, a dynamic occupancy grid map representing the static and dynamic environment around the ego-vehicle is utilized as input to a deep convolutional neural network. This yields the advantage of using data from a single timestamp for prediction, rather than an entire time series. Furthermore, convolutional neural networks have the inherent characteristic of using context information, enabling the implicit modeling of road user interaction. One of the major advantages is the unsupervised learning character due to fully automatic label generation. The presented algorithm is trained and evaluated on multiple hours of recorded sensor data containing multiple road users, e.g., pedestrians, bikes and vehicles.
学习自动驾驶的长期情况预测
自动驾驶面临的一个主要挑战是预测有多个道路使用者的复杂市中心场景。该贡献通过将,,,,,,,,(用于环境表示的贝叶斯过滤技术)和作为长期预测器的机器学习相结合,解决了这一挑战。因此,利用代表自我车辆周围静态和动态环境的动态占用网格图作为深度卷积神经网络的输入。这样做的好处是可以使用来自单个时间戳的数据进行预测,而不是整个时间序列。此外,卷积神经网络具有使用上下文信息的固有特性,可以对道路用户交互进行隐式建模。其中一个主要优点是由于全自动标签生成而具有无监督学习特性。所提出的算法是在包含多个道路使用者(如行人、自行车和车辆)的多个小时记录的传感器数据上进行训练和评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信