MimicNet

Qizhen Zhang, K. K. W. Ng, Charles W. Kazer, Shen Yan, João Sedoc, Vincent Liu
{"title":"MimicNet","authors":"Qizhen Zhang, K. K. W. Ng, Charles W. Kazer, Shen Yan, João Sedoc, Vincent Liu","doi":"10.1145/3452296.3472926","DOIUrl":null,"url":null,"abstract":"At-scale evaluation of new data center network innovations is becoming increasingly intractable. This is true for testbeds, where few, if any, can afford a dedicated, full-scale replica of a data center. It is also true for simulations, which while originally designed for precisely this purpose, have struggled to cope with the size of today's networks. This paper presents an approach for quickly obtaining accurate performance estimates for large data center networks. Our system,MimicNet, provides users with the familiar abstraction of a packet-level simulation for a portion of the network while leveraging redundancy and recent advances in machine learning to quickly and accurately approximate portions of the network that are not directly visible. MimicNet can provide over two orders of magnitude speedup compared to regular simulation for a data center with thousands of servers. Even at this scale, MimicNet estimates of the tail FCT, throughput, and RTT are within 5% of the true results.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"141 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452296.3472926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

At-scale evaluation of new data center network innovations is becoming increasingly intractable. This is true for testbeds, where few, if any, can afford a dedicated, full-scale replica of a data center. It is also true for simulations, which while originally designed for precisely this purpose, have struggled to cope with the size of today's networks. This paper presents an approach for quickly obtaining accurate performance estimates for large data center networks. Our system,MimicNet, provides users with the familiar abstraction of a packet-level simulation for a portion of the network while leveraging redundancy and recent advances in machine learning to quickly and accurately approximate portions of the network that are not directly visible. MimicNet can provide over two orders of magnitude speedup compared to regular simulation for a data center with thousands of servers. Even at this scale, MimicNet estimates of the tail FCT, throughput, and RTT are within 5% of the true results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信