{"title":"Shape dependence of elastic moduli of metallic nanoparticles","authors":"B. K. Pandey, Ratan Lal Jaiswal, Sachin","doi":"10.1063/1.5122603","DOIUrl":null,"url":null,"abstract":"The variation of physical properties of nanomaterials have been a matter of great debate in the recent decades. Different researchers have reported drastic change in the physical properties of metals at their nano scale with their different shapes. In the present work, we have computed the theoretical values of Young’s modulus and Bulk Modulus of ofAluminium (Al), Nickel (Ni) and Silver (Ag) having their size less than 30 nm with different shapes (i.e. for spherical and non-spherical). For computation we have consider the fundamental relation of cohesive energy with melting point. Variation in elastic constants has been interpreted on the basis of the presence of number of surface atoms due to the change in surface to volume ratio of metals at the nano level. The physical properties change in different manner due to their shape factor. In present study it is found that there is a drastic change in the physical properties of nanomaterials below 20 nanometers. This study also shows that the shape of nanoparticles plays an important role to affect their physical properties.The variation of physical properties of nanomaterials have been a matter of great debate in the recent decades. Different researchers have reported drastic change in the physical properties of metals at their nano scale with their different shapes. In the present work, we have computed the theoretical values of Young’s modulus and Bulk Modulus of ofAluminium (Al), Nickel (Ni) and Silver (Ag) having their size less than 30 nm with different shapes (i.e. for spherical and non-spherical). For computation we have consider the fundamental relation of cohesive energy with melting point. Variation in elastic constants has been interpreted on the basis of the presence of number of surface atoms due to the change in surface to volume ratio of metals at the nano level. The physical properties change in different manner due to their shape factor. In present study it is found that there is a drastic change in the physical properties of nanomaterials below 20 nanometers. This study also shows that the shape of nanopar...","PeriodicalId":7262,"journal":{"name":"ADVANCES IN BASIC SCIENCE (ICABS 2019)","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADVANCES IN BASIC SCIENCE (ICABS 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5122603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The variation of physical properties of nanomaterials have been a matter of great debate in the recent decades. Different researchers have reported drastic change in the physical properties of metals at their nano scale with their different shapes. In the present work, we have computed the theoretical values of Young’s modulus and Bulk Modulus of ofAluminium (Al), Nickel (Ni) and Silver (Ag) having their size less than 30 nm with different shapes (i.e. for spherical and non-spherical). For computation we have consider the fundamental relation of cohesive energy with melting point. Variation in elastic constants has been interpreted on the basis of the presence of number of surface atoms due to the change in surface to volume ratio of metals at the nano level. The physical properties change in different manner due to their shape factor. In present study it is found that there is a drastic change in the physical properties of nanomaterials below 20 nanometers. This study also shows that the shape of nanoparticles plays an important role to affect their physical properties.The variation of physical properties of nanomaterials have been a matter of great debate in the recent decades. Different researchers have reported drastic change in the physical properties of metals at their nano scale with their different shapes. In the present work, we have computed the theoretical values of Young’s modulus and Bulk Modulus of ofAluminium (Al), Nickel (Ni) and Silver (Ag) having their size less than 30 nm with different shapes (i.e. for spherical and non-spherical). For computation we have consider the fundamental relation of cohesive energy with melting point. Variation in elastic constants has been interpreted on the basis of the presence of number of surface atoms due to the change in surface to volume ratio of metals at the nano level. The physical properties change in different manner due to their shape factor. In present study it is found that there is a drastic change in the physical properties of nanomaterials below 20 nanometers. This study also shows that the shape of nanopar...