L. Bestani, N. Espurt, J. Lamarche, M. Floquet, J. Philip, O. Bellier, F. Hollender
{"title":"Structural style and evolution of the Pyrenean-Provence thrust belt, SE France","authors":"L. Bestani, N. Espurt, J. Lamarche, M. Floquet, J. Philip, O. Bellier, F. Hollender","doi":"10.2113/GSSGFBULL.186.4-5.223","DOIUrl":null,"url":null,"abstract":"The Pyrenean-Provence fold-thrust belt is characterized by a geological complexity arising from superimposed tectonic history and the propagation of the deformation through a heterogeneous mechanical substratum inherited from Paleozoic and Mesozoic times. The construction of a regional balanced cross section together with field data show that the thrust system of the southeastern Provence region is characterized by a mixed thick- and thin-skinned tectonic style related to the inversion of deep-seated late Paleozoic-Triassic extensional structures and the decollement of the Mesozoic-Cenozoic sedimentary cover above Triassic series. Earliest Cenomanian restoration state highlights the northward pinched-out of the Lower Cretaceous sedimentary series above the main long-wavelength Durance High uplift. Latest Santonian restoration state indicates a southward tilting of ~2° of the basin attributed to the initial growth of the Pyrenean-Provence prism controlling the external flexure of the foreland. Thrusts propagation in the northern part of the Pyrenean-Provence fold-thrust belt was recorded to be synchronous during latest Cretaceous to Eocene time and produced a ~7° southward basin tilting. This major tilting is attributed to the tectonic inversion and basement thrust stacking of the Cap Sicie-Sainte Baume units. Cross section balancing shows a total horizontal basement shortening of 40 km (~35 %) across the Pyrenean-Provence foreland. The main part of this shortening (~37 km) was accommodated by thick-skinned thrusts involving basement south of the Arc syncline. ~5 km of shortening were accommodated northward by the Arc syncline and eastern Sainte-Victoire thin-skin structures, resulting from slip transferred from the deep thick-skinned intercutaneous thrust wedge. Finally we interpret salt tectonic structures of the southeastern Provence as passive diapirism growth during Jurassic to late Cretaceous time, and then reactivated during Pyrenean-Provence compression. Late normal faulting related to hypothetical reactive diapirism during the Oligocene extension episode was predominantly localized above inherited salt structures and probably controlled by inherited basement faults.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/GSSGFBULL.186.4-5.223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 25
Abstract
The Pyrenean-Provence fold-thrust belt is characterized by a geological complexity arising from superimposed tectonic history and the propagation of the deformation through a heterogeneous mechanical substratum inherited from Paleozoic and Mesozoic times. The construction of a regional balanced cross section together with field data show that the thrust system of the southeastern Provence region is characterized by a mixed thick- and thin-skinned tectonic style related to the inversion of deep-seated late Paleozoic-Triassic extensional structures and the decollement of the Mesozoic-Cenozoic sedimentary cover above Triassic series. Earliest Cenomanian restoration state highlights the northward pinched-out of the Lower Cretaceous sedimentary series above the main long-wavelength Durance High uplift. Latest Santonian restoration state indicates a southward tilting of ~2° of the basin attributed to the initial growth of the Pyrenean-Provence prism controlling the external flexure of the foreland. Thrusts propagation in the northern part of the Pyrenean-Provence fold-thrust belt was recorded to be synchronous during latest Cretaceous to Eocene time and produced a ~7° southward basin tilting. This major tilting is attributed to the tectonic inversion and basement thrust stacking of the Cap Sicie-Sainte Baume units. Cross section balancing shows a total horizontal basement shortening of 40 km (~35 %) across the Pyrenean-Provence foreland. The main part of this shortening (~37 km) was accommodated by thick-skinned thrusts involving basement south of the Arc syncline. ~5 km of shortening were accommodated northward by the Arc syncline and eastern Sainte-Victoire thin-skin structures, resulting from slip transferred from the deep thick-skinned intercutaneous thrust wedge. Finally we interpret salt tectonic structures of the southeastern Provence as passive diapirism growth during Jurassic to late Cretaceous time, and then reactivated during Pyrenean-Provence compression. Late normal faulting related to hypothetical reactive diapirism during the Oligocene extension episode was predominantly localized above inherited salt structures and probably controlled by inherited basement faults.