Sahar Samieyan Dehkordi, S. Mousavi, Marzieh Ebrahimi, S. Alizadeh, Amir Abbas Hedayati Asl, Monireh Mohammad, Bahareh Aliabedi
{"title":"Upregulation of hsa-miR-625-5p Inhibits Invasion of Acute Myeloid Leukemia Cancer Cells through ILK/AKT Pathway","authors":"Sahar Samieyan Dehkordi, S. Mousavi, Marzieh Ebrahimi, S. Alizadeh, Amir Abbas Hedayati Asl, Monireh Mohammad, Bahareh Aliabedi","doi":"10.22074/cellj.2022.7658","DOIUrl":null,"url":null,"abstract":"Objective Acute myeloid leukemia (AML) is characterized by abnormalities of differentiation and growth of primary hematopoietic stem cells (HSCs) in the blood and bone marrow. In many studies, miR-625-5p has been shown to inhibit downstream pathways from affecting the metastasis and invasion of the integrin-linked kinase (ILK) signaling pathway. It has been proved that the expression of miR-625-5p decreases in AML cell lines. This study aimed to investigate the effect of miR-625-5p upregulation on the invasion of KG1 ell line in vitro. Materials and Methods In this experimental study, we investigated the impact of upregulation of miR-625-5p on invasion via the ILK/AKT pathway in the KG1 cell line. After transfection using the viral method, the cellular invasion was assessed by invasion assay and the levels of miR-625-5p genes and protein were evaluated by quantitative polymerase chain reaction (qPCR) and western blotting. Moreover, CXCR4 level was assessed by flow cytometry. Results The invasion significantly reduced in MiR-625-5p-transfected KG1 cells (P<0.01) that was concomitant with remarkably decreasing in the expression levels of ILK, NF-κB, and COX2 genes compare with the control group (P<0.01). Incontrast, MMP9, AP1, and AKT significantly increased (P<0.01, P<0.001 and P<0.01, respectively) and GSK3β did not change significantly in MiR-625-5p-transfected KG1 cells. The protein level of NF-κB decreased (P<0.01) and MMP9 increased, however it was not significant. Moreoever, the expression of CXCR4 was significantly lower (P<0.01) in comparison with the control group. Conclusion miR-625-5p leads to a reduction in cell invasion in the AML cell line through ILK pathway. Therefore, it could be a breakthrough in future AML-related research. However, further studies are needed to support this argument.","PeriodicalId":9692,"journal":{"name":"Cell Journal (Yakhteh)","volume":"140 1","pages":"76 - 84"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Journal (Yakhteh)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22074/cellj.2022.7658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective Acute myeloid leukemia (AML) is characterized by abnormalities of differentiation and growth of primary hematopoietic stem cells (HSCs) in the blood and bone marrow. In many studies, miR-625-5p has been shown to inhibit downstream pathways from affecting the metastasis and invasion of the integrin-linked kinase (ILK) signaling pathway. It has been proved that the expression of miR-625-5p decreases in AML cell lines. This study aimed to investigate the effect of miR-625-5p upregulation on the invasion of KG1 ell line in vitro. Materials and Methods In this experimental study, we investigated the impact of upregulation of miR-625-5p on invasion via the ILK/AKT pathway in the KG1 cell line. After transfection using the viral method, the cellular invasion was assessed by invasion assay and the levels of miR-625-5p genes and protein were evaluated by quantitative polymerase chain reaction (qPCR) and western blotting. Moreover, CXCR4 level was assessed by flow cytometry. Results The invasion significantly reduced in MiR-625-5p-transfected KG1 cells (P<0.01) that was concomitant with remarkably decreasing in the expression levels of ILK, NF-κB, and COX2 genes compare with the control group (P<0.01). Incontrast, MMP9, AP1, and AKT significantly increased (P<0.01, P<0.001 and P<0.01, respectively) and GSK3β did not change significantly in MiR-625-5p-transfected KG1 cells. The protein level of NF-κB decreased (P<0.01) and MMP9 increased, however it was not significant. Moreoever, the expression of CXCR4 was significantly lower (P<0.01) in comparison with the control group. Conclusion miR-625-5p leads to a reduction in cell invasion in the AML cell line through ILK pathway. Therefore, it could be a breakthrough in future AML-related research. However, further studies are needed to support this argument.