{"title":"Negative correlation of adjacent Busemann increments","authors":"Ian Alevy, Arjun Krishnan","doi":"10.1214/21-aihp1236","DOIUrl":null,"url":null,"abstract":"We consider i.i.d. last-passage percolation on $\\mathbb{Z}^2$ with weights having distribution $F$ and time-constant $g_F$. We provide an explicit condition on the large deviation rate function for independent sums of $F$ that determines when some adjacent Busemann function increments are negatively correlated. As an example, we prove that $\\operatorname{Bernoulli}(p)$ weights for $p>p^*$, ($p^* \\approx 0.6504$) satisfy this condition. We prove this condition by establishing a direct relationship between the negative correlations of adjacent Busemann increments and the dominance of the time-constant $g_F$ by the function describing the time-constant of last-passage percolation with exponential or geometric weights.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 3
Abstract
We consider i.i.d. last-passage percolation on $\mathbb{Z}^2$ with weights having distribution $F$ and time-constant $g_F$. We provide an explicit condition on the large deviation rate function for independent sums of $F$ that determines when some adjacent Busemann function increments are negatively correlated. As an example, we prove that $\operatorname{Bernoulli}(p)$ weights for $p>p^*$, ($p^* \approx 0.6504$) satisfy this condition. We prove this condition by establishing a direct relationship between the negative correlations of adjacent Busemann increments and the dominance of the time-constant $g_F$ by the function describing the time-constant of last-passage percolation with exponential or geometric weights.