Negative correlation of adjacent Busemann increments

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Ian Alevy, Arjun Krishnan
{"title":"Negative correlation of adjacent Busemann increments","authors":"Ian Alevy, Arjun Krishnan","doi":"10.1214/21-aihp1236","DOIUrl":null,"url":null,"abstract":"We consider i.i.d. last-passage percolation on $\\mathbb{Z}^2$ with weights having distribution $F$ and time-constant $g_F$. We provide an explicit condition on the large deviation rate function for independent sums of $F$ that determines when some adjacent Busemann function increments are negatively correlated. As an example, we prove that $\\operatorname{Bernoulli}(p)$ weights for $p>p^*$, ($p^* \\approx 0.6504$) satisfy this condition. We prove this condition by establishing a direct relationship between the negative correlations of adjacent Busemann increments and the dominance of the time-constant $g_F$ by the function describing the time-constant of last-passage percolation with exponential or geometric weights.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 3

Abstract

We consider i.i.d. last-passage percolation on $\mathbb{Z}^2$ with weights having distribution $F$ and time-constant $g_F$. We provide an explicit condition on the large deviation rate function for independent sums of $F$ that determines when some adjacent Busemann function increments are negatively correlated. As an example, we prove that $\operatorname{Bernoulli}(p)$ weights for $p>p^*$, ($p^* \approx 0.6504$) satisfy this condition. We prove this condition by establishing a direct relationship between the negative correlations of adjacent Busemann increments and the dominance of the time-constant $g_F$ by the function describing the time-constant of last-passage percolation with exponential or geometric weights.
相邻Busemann增量呈负相关
我们考虑$\mathbb{Z}^2$上的i.i.d最后一段渗透,其权重具有分布$F$和时间常数$g_F$。我们提供了一个关于F的独立和的大偏差率函数的显式条件,该条件决定了当一些相邻的Busemann函数增量负相关时。作为一个例子,我们证明了$p>p^*$, ($p^* \约0.6504$)的$\operatorname{Bernoulli}(p)$权重满足这个条件。我们通过用指数或几何权重描述最后通道渗透的时间常数的函数,建立了相邻Busemann增量的负相关与时间常数g_F$占主导地位之间的直接关系,从而证明了这一条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信