Resent Progress of LiNi1-x-yCoxMnyO2 for Lithium-ion batteries

H. Lee, Yoonbo Sim, Kijae Kim
{"title":"Resent Progress of LiNi1-x-yCoxMnyO2 for Lithium-ion batteries","authors":"H. Lee, Yoonbo Sim, Kijae Kim","doi":"10.31613/ceramist.2023.26.2.06","DOIUrl":null,"url":null,"abstract":"The increased use of lithium-ion batteries in larger devices such as electric vehicles and energy storage devices has led to a need for improved battery performance. Researchers are developing cathode active materials with higher energy density, such as lithium phosphate and lithium transition metal compounds. Ternary cathode active materials with high capacity have also been developed, but there are issues with cation mixing and side reactions that can lead to reduced capacity, voltage drop, and even explosions. To address these issues, researchers are focusing on stabilizing and optimizing the cathode-electrolyte interface through methods such as coating with protective layers, cation or anion doping and changing of active materials structure. Herein, we briefly introduce and discuss the recent research with development trend of cathode material’s degradation solution for Li-ion batteries.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/ceramist.2023.26.2.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increased use of lithium-ion batteries in larger devices such as electric vehicles and energy storage devices has led to a need for improved battery performance. Researchers are developing cathode active materials with higher energy density, such as lithium phosphate and lithium transition metal compounds. Ternary cathode active materials with high capacity have also been developed, but there are issues with cation mixing and side reactions that can lead to reduced capacity, voltage drop, and even explosions. To address these issues, researchers are focusing on stabilizing and optimizing the cathode-electrolyte interface through methods such as coating with protective layers, cation or anion doping and changing of active materials structure. Herein, we briefly introduce and discuss the recent research with development trend of cathode material’s degradation solution for Li-ion batteries.
锂离子电池用LiNi1-x-yCoxMnyO2研究进展
锂离子电池在电动汽车和储能设备等大型设备中的使用越来越多,这导致了对提高电池性能的需求。研究人员正在开发能量密度更高的正极活性材料,如磷酸锂和锂过渡金属化合物。高容量三元正极活性材料也得到了开发,但存在阳离子混合和副反应的问题,可能导致容量降低、电压下降,甚至爆炸。为了解决这些问题,研究人员正致力于通过涂覆保护层、阳离子或阴离子掺杂以及改变活性材料结构等方法来稳定和优化阴极-电解质界面。本文简要介绍和讨论了锂离子电池正极材料降解解决方案的研究现状和发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信